mngdataclean


Namemngdataclean JSON
Version 0.4.2 PyPI version JSON
download
home_pagehttps://github.com/Nagaganesh21/mngdataclean
SummaryText preprocessing package
upload_time2024-03-03 14:27:07
maintainer
docs_urlNone
authorNagaganesh
requires_python
licenseMIT
keywords text preprocessing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Preprocess YourText

Preprocess YourText is a Python package for text preprocessing tasks, designed to simplify and streamline the process of cleaning and preparing text data for natural language processing (NLP) tasks.

## Features

- **HTML Tag Removal**: Easily remove HTML tags from text data.
- **URL Removal**: Remove URLs from text data.
- **Email Removal**: Remove email addresses from text data.
- **Special Character Removal**: Remove special characters from text data.
- **Accent Removal**: Remove accents from characters in text data.
- **Contractions Expansion**: Expand contractions in text data (e.g., "don't" to "do not").
- **Lemmatization**: Lemmatize words in text data to their base form.
- **Spelling Correction**: Correct spelling mistakes in text data.

## License

This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.

## Installation

You can install the package via pip:

```bash
pip install mngdataclean

## Usage
import mngdataclean as mdc

# Example usage:
text = "This is an example text with HTML tags <b>and URLs</b>."
clean_text = mdc.get_clean(text)
print(clean_text)

#output is 
This is an example text with HTML tags and URLs.






            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Nagaganesh21/mngdataclean",
    "name": "mngdataclean",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "text,preprocessing",
    "author": "Nagaganesh",
    "author_email": "mnagaganesh21@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/1d/36/3abc07be11c27d744de165d982d9a21395db0b7639fa8cc2858417828a8d/mngdataclean-0.4.2.tar.gz",
    "platform": null,
    "description": "# Preprocess YourText\n\nPreprocess YourText is a Python package for text preprocessing tasks, designed to simplify and streamline the process of cleaning and preparing text data for natural language processing (NLP) tasks.\n\n## Features\n\n- **HTML Tag Removal**: Easily remove HTML tags from text data.\n- **URL Removal**: Remove URLs from text data.\n- **Email Removal**: Remove email addresses from text data.\n- **Special Character Removal**: Remove special characters from text data.\n- **Accent Removal**: Remove accents from characters in text data.\n- **Contractions Expansion**: Expand contractions in text data (e.g., \"don't\" to \"do not\").\n- **Lemmatization**: Lemmatize words in text data to their base form.\n- **Spelling Correction**: Correct spelling mistakes in text data.\n\n## License\n\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n## Installation\n\nYou can install the package via pip:\n\n```bash\npip install mngdataclean\n\n## Usage\nimport mngdataclean as mdc\n\n# Example usage:\ntext = \"This is an example text with HTML tags <b>and URLs</b>.\"\nclean_text = mdc.get_clean(text)\nprint(clean_text)\n\n#output is \nThis is an example text with HTML tags and URLs.\n\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Text preprocessing package",
    "version": "0.4.2",
    "project_urls": {
        "Homepage": "https://github.com/Nagaganesh21/mngdataclean"
    },
    "split_keywords": [
        "text",
        "preprocessing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fdaab9f62a3066d2fca6398412c82753f6ae4b65fe3900f77b598ab51b109608",
                "md5": "9aa4d1c01739061e3cc31b11411151fd",
                "sha256": "9d9b694c4e4bf8b851a4e589fd7ce1918ead7f3bc2562f5de26b785729aff000"
            },
            "downloads": -1,
            "filename": "mngdataclean-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9aa4d1c01739061e3cc31b11411151fd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 3557,
            "upload_time": "2024-03-03T14:27:03",
            "upload_time_iso_8601": "2024-03-03T14:27:03.049864Z",
            "url": "https://files.pythonhosted.org/packages/fd/aa/b9f62a3066d2fca6398412c82753f6ae4b65fe3900f77b598ab51b109608/mngdataclean-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1d363abc07be11c27d744de165d982d9a21395db0b7639fa8cc2858417828a8d",
                "md5": "39ae576651d7f069ca3395ee7b0a9362",
                "sha256": "b0a30fcadf1a1669f2a9f23295abcc7eef177eaa343bca4897da8d4bd40f4e57"
            },
            "downloads": -1,
            "filename": "mngdataclean-0.4.2.tar.gz",
            "has_sig": false,
            "md5_digest": "39ae576651d7f069ca3395ee7b0a9362",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3322,
            "upload_time": "2024-03-03T14:27:07",
            "upload_time_iso_8601": "2024-03-03T14:27:07.818503Z",
            "url": "https://files.pythonhosted.org/packages/1d/36/3abc07be11c27d744de165d982d9a21395db0b7639fa8cc2858417828a8d/mngdataclean-0.4.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-03 14:27:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Nagaganesh21",
    "github_project": "mngdataclean",
    "github_not_found": true,
    "lcname": "mngdataclean"
}
        
Elapsed time: 2.89464s