model-finetune


Namemodel-finetune JSON
Version 1.1.0 PyPI version JSON
download
home_pageNone
Summary智能模型微调和自动建模工具包 - 专业的光谱数据处理和机器学习建模解决方案
upload_time2025-08-01 06:39:24
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT (Non-Commercial Use Only)
keywords model-finetune automl machine-learning fine-tuning model-optimization automated-modeling ml-pipeline spectral-analysis data-fusion geo-matching
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Model Finetune 🚀

[![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
[![License: MIT (Non-Commercial)](https://img.shields.io/badge/License-MIT%20(Non--Commercial)-orange.svg)](LICENSE)

**智能模型微调和自动建模工具包**

Model Finetune 是一个专业的Python包,专门用于处理光谱数据与采样数据的智能匹配、清洗和机器学习模型训练。

## 🏗️ 项目架构

采用**固定接口 + 可更新包**的设计架构:

```
固定接口 (interface.py)     ←── 稳定的外部调用入口
    ↓
包内功能 (model-finetune)   ←── 可更新的算法实现
```

## ✨ 主要功能

- 🎯 **智能数据匹配**: 光谱数据与采样数据的地理坐标匹配
- 🧹 **数据清洗**: 自动异常值检测和数据预处理
- 🤖 **自动建模**: 智能模型训练和参数优化
- 🌐 **多数据源**: 支持URL下载和本地文件处理
- 🔐 **安全存储**: 加密的模型结果存储
- 📊 **流式处理**: 支持JSON配置的流式输入

## ⚙️ 配置设置

### 🔐 安全配置(必需)

#### ⭐ 推荐:.env文件方式(跨平台)
```bash
# 一键生成.env文件(包含所有必需配置)
python generate_debug_config.py env

# 自动加载,无需额外设置
# 支持 Windows、Linux、macOS
```

#### 其他方式
```bash
# 环境变量
export WATER_QUALITY_ENCRYPTION_KEY="your_key"
export WATER_QUALITY_SALT="your_salt"
export WATER_QUALITY_IV="your_iv"

# JSON配置文件
export WATER_QUALITY_CONFIG_FILE="./config.json"

# 二进制密钥文件
export WATER_QUALITY_KEY_FILE="./secret.key"
```

📝 详细配置指南请查看 [SECURITY_CONFIG.md](SECURITY_CONFIG.md)

### 🔧 调试配置(开发环境)

```bash
# 在.env文件中添加调试配置
# DEBUG_ZIP_PATH=/path/to/test.zip
# DEBUG_CSV_PATH=/path/to/test.csv

# 或者使用环境变量
export DEBUG_ZIP_PATH="/path/to/test.zip"
export DEBUG_CSV_PATH="/path/to/test.csv"

# 或者使用JSON配置文件
python generate_debug_config.py debug
```

## 🚀 快速使用

### 安装

```bash
# 安装包
pip install model-finetune

# 或使用uv(推荐)
uv add model-finetune
```

### 基本使用

通过固定接口调用,支持两种输入方式:

#### 1. 直接JSON输入

```bash
echo '{"file_url": "数据ZIP的URL", "measure_data": "测量数据CSV的URL"}' | python interface.py
```

#### 2. JSON文件路径输入

```bash
echo "/path/to/config.json" | python interface.py
```

### 配置文件格式

创建 `config.json` 文件:

```json
{
  "file_url": "https://example.com/spectral_data.zip",
  "measure_data": "https://example.com/ground_truth.csv"
}
```

### 使用示例

```bash
# Windows路径(WSL环境自动转换)
echo 'D:\data\config.json' | python interface.py

# Linux路径
echo '/mnt/d/data/config.json' | python interface.py

# 直接JSON
echo '{"file_url": "https://...", "measure_data": "https://..."}' | python interface.py
```

## 📋 输出结果

- **成功时**: 输出加密模型文件的绝对路径
- **失败时**: 输出 `error[错误码]: 错误信息`
- **日志文件**: 自动保存在 `./interface_output/run_时间戳/interface.log`

## 🔄 算法更新流程

1. 修改 `model-finetune` 包中的算法代码
2. 重新发布包: `pip install --upgrade model-finetune`
3. **固定接口自动使用新算法**,无需修改

## 🛠️ 开发环境

### 使用 uv 管理环境

```bash
# 安装依赖
uv sync

# 运行开发版本
uv run python interface.py

# 运行测试
uv run pytest tests/
```

### 使用 pip 管理环境

```bash
# 安装开发版本
pip install -e .

# 设置版本环境变量(开发阶段)
export SETUPTOOLS_SCM_PRETEND_VERSION_FOR_MODEL_FINETUNE=1.0.0
```

## 📁 项目结构

```
project/
├── interface.py                    # 固定接口文件(永不变更)
└── model-finetune/                # 可更新的算法包
    ├── src/model_finetune/
    │   ├── main.py                # 核心处理逻辑
    │   ├── unified_interface.py   # 统一接口处理器
    │   ├── common_validators.py   # 公共验证器
    │   ├── data_processor.py      # 数据处理
    │   ├── downloader.py          # 文件下载
    │   ├── extractor.py           # ZIP解压
    │   ├── data_merger.py         # 数据合并
    │   ├── geo_utils.py           # 地理工具
    │   └── utils.py              # 通用工具
    ├── tests/                     # 测试文件
    └── pyproject.toml            # 包配置
```

## 🧪 测试

```bash
# 基础功能测试
uv run python -c "from model_finetune import process_interface_config; print('导入成功')"

# 接口测试
echo '{"file_url": "test", "measure_data": "test"}' | timeout 5 uv run python interface.py

# 完整测试套件
uv run pytest tests/ -v
```

## 🔧 配置选项

### 环境变量

```bash
# 开发阶段版本号
export SETUPTOOLS_SCM_PRETEND_VERSION_FOR_MODEL_FINETUNE=1.0.0

# OSS配置(如使用阿里云存储)
export OSS_ACCESS_KEY_ID=your_key_id
export OSS_ACCESS_KEY_SECRET=your_secret
```

### 调试模式

```bash
# 启用调试模式
python interface.py --debug
```

## 🆘 故障排除

### 常见问题

1. **路径问题**: Windows路径在WSL环境下会自动转换
2. **版本问题**: 开发环境需要设置 `SETUPTOOLS_SCM_PRETEND_VERSION`
3. **权限问题**: 确保对输出目录有写权限

### 日志查看

```bash
# 查看最新日志
tail -f ./interface_output/run_*/interface.log
```

## 📄 许可证

本项目采用 **MIT (Non-Commercial Use Only)** 许可证:

- ✅ **允许**: 研究、教育、个人使用
- ❌ **禁止**: 任何形式的商业使用
- 📧 **商业授权**: 请联系 zyq1034378361@gmail.com

详情请查看 [LICENSE](LICENSE) 文件。

## 👨‍💻 作者

**周元琦 (Yuan-Qi Zhou)**
- 📧 Email: zyq1034378361@gmail.com
- 🌟 专注于智能数据处理和机器学习

## 🤝 贡献

欢迎提交 Issue 和 Pull Request!请注意:
- 保持固定接口的稳定性
- 算法改进请在包内实现
- 遵循项目的编码规范

## 📞 支持

如有问题,请通过以下方式联系:

- 📧 **邮箱**: zyq1034378361@gmail.com
- 🐛 **问题反馈**: 通过邮箱联系
- 📖 **使用文档**: 查看项目内的 Markdown 文档

---

**让模型微调变得简单高效哟!** 🎯

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "model-finetune",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "\"\u5468\u5143\u7426 (Yuan-Qi Zhou)\" <zyq1034378361@gmail.com>",
    "keywords": "model-finetune, automl, machine-learning, fine-tuning, model-optimization, automated-modeling, ml-pipeline, spectral-analysis, data-fusion, geo-matching",
    "author": null,
    "author_email": "\"\u5468\u5143\u7426 (Yuan-Qi Zhou)\" <zyq1034378361@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/05/04/c6575ff3a9220073fef0229a84f94e67e5f471a3b43cf075d79560ffbca4/model_finetune-1.1.0.tar.gz",
    "platform": null,
    "description": "# Model Finetune \ud83d\ude80\n\n[![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)\n[![License: MIT (Non-Commercial)](https://img.shields.io/badge/License-MIT%20(Non--Commercial)-orange.svg)](LICENSE)\n\n**\u667a\u80fd\u6a21\u578b\u5fae\u8c03\u548c\u81ea\u52a8\u5efa\u6a21\u5de5\u5177\u5305**\n\nModel Finetune \u662f\u4e00\u4e2a\u4e13\u4e1a\u7684Python\u5305\uff0c\u4e13\u95e8\u7528\u4e8e\u5904\u7406\u5149\u8c31\u6570\u636e\u4e0e\u91c7\u6837\u6570\u636e\u7684\u667a\u80fd\u5339\u914d\u3001\u6e05\u6d17\u548c\u673a\u5668\u5b66\u4e60\u6a21\u578b\u8bad\u7ec3\u3002\n\n## \ud83c\udfd7\ufe0f \u9879\u76ee\u67b6\u6784\n\n\u91c7\u7528**\u56fa\u5b9a\u63a5\u53e3 + \u53ef\u66f4\u65b0\u5305**\u7684\u8bbe\u8ba1\u67b6\u6784\uff1a\n\n```\n\u56fa\u5b9a\u63a5\u53e3 (interface.py)     \u2190\u2500\u2500 \u7a33\u5b9a\u7684\u5916\u90e8\u8c03\u7528\u5165\u53e3\n    \u2193\n\u5305\u5185\u529f\u80fd (model-finetune)   \u2190\u2500\u2500 \u53ef\u66f4\u65b0\u7684\u7b97\u6cd5\u5b9e\u73b0\n```\n\n## \u2728 \u4e3b\u8981\u529f\u80fd\n\n- \ud83c\udfaf **\u667a\u80fd\u6570\u636e\u5339\u914d**: \u5149\u8c31\u6570\u636e\u4e0e\u91c7\u6837\u6570\u636e\u7684\u5730\u7406\u5750\u6807\u5339\u914d\n- \ud83e\uddf9 **\u6570\u636e\u6e05\u6d17**: \u81ea\u52a8\u5f02\u5e38\u503c\u68c0\u6d4b\u548c\u6570\u636e\u9884\u5904\u7406\n- \ud83e\udd16 **\u81ea\u52a8\u5efa\u6a21**: \u667a\u80fd\u6a21\u578b\u8bad\u7ec3\u548c\u53c2\u6570\u4f18\u5316\n- \ud83c\udf10 **\u591a\u6570\u636e\u6e90**: \u652f\u6301URL\u4e0b\u8f7d\u548c\u672c\u5730\u6587\u4ef6\u5904\u7406\n- \ud83d\udd10 **\u5b89\u5168\u5b58\u50a8**: \u52a0\u5bc6\u7684\u6a21\u578b\u7ed3\u679c\u5b58\u50a8\n- \ud83d\udcca **\u6d41\u5f0f\u5904\u7406**: \u652f\u6301JSON\u914d\u7f6e\u7684\u6d41\u5f0f\u8f93\u5165\n\n## \u2699\ufe0f \u914d\u7f6e\u8bbe\u7f6e\n\n### \ud83d\udd10 \u5b89\u5168\u914d\u7f6e\uff08\u5fc5\u9700\uff09\n\n#### \u2b50 \u63a8\u8350\uff1a.env\u6587\u4ef6\u65b9\u5f0f\uff08\u8de8\u5e73\u53f0\uff09\n```bash\n# \u4e00\u952e\u751f\u6210.env\u6587\u4ef6\uff08\u5305\u542b\u6240\u6709\u5fc5\u9700\u914d\u7f6e\uff09\npython generate_debug_config.py env\n\n# \u81ea\u52a8\u52a0\u8f7d\uff0c\u65e0\u9700\u989d\u5916\u8bbe\u7f6e\n# \u652f\u6301 Windows\u3001Linux\u3001macOS\n```\n\n#### \u5176\u4ed6\u65b9\u5f0f\n```bash\n# \u73af\u5883\u53d8\u91cf\nexport WATER_QUALITY_ENCRYPTION_KEY=\"your_key\"\nexport WATER_QUALITY_SALT=\"your_salt\"\nexport WATER_QUALITY_IV=\"your_iv\"\n\n# JSON\u914d\u7f6e\u6587\u4ef6\nexport WATER_QUALITY_CONFIG_FILE=\"./config.json\"\n\n# \u4e8c\u8fdb\u5236\u5bc6\u94a5\u6587\u4ef6\nexport WATER_QUALITY_KEY_FILE=\"./secret.key\"\n```\n\n\ud83d\udcdd \u8be6\u7ec6\u914d\u7f6e\u6307\u5357\u8bf7\u67e5\u770b [SECURITY_CONFIG.md](SECURITY_CONFIG.md)\n\n### \ud83d\udd27 \u8c03\u8bd5\u914d\u7f6e\uff08\u5f00\u53d1\u73af\u5883\uff09\n\n```bash\n# \u5728.env\u6587\u4ef6\u4e2d\u6dfb\u52a0\u8c03\u8bd5\u914d\u7f6e\n# DEBUG_ZIP_PATH=/path/to/test.zip\n# DEBUG_CSV_PATH=/path/to/test.csv\n\n# \u6216\u8005\u4f7f\u7528\u73af\u5883\u53d8\u91cf\nexport DEBUG_ZIP_PATH=\"/path/to/test.zip\"\nexport DEBUG_CSV_PATH=\"/path/to/test.csv\"\n\n# \u6216\u8005\u4f7f\u7528JSON\u914d\u7f6e\u6587\u4ef6\npython generate_debug_config.py debug\n```\n\n## \ud83d\ude80 \u5feb\u901f\u4f7f\u7528\n\n### \u5b89\u88c5\n\n```bash\n# \u5b89\u88c5\u5305\npip install model-finetune\n\n# \u6216\u4f7f\u7528uv\uff08\u63a8\u8350\uff09\nuv add model-finetune\n```\n\n### \u57fa\u672c\u4f7f\u7528\n\n\u901a\u8fc7\u56fa\u5b9a\u63a5\u53e3\u8c03\u7528\uff0c\u652f\u6301\u4e24\u79cd\u8f93\u5165\u65b9\u5f0f\uff1a\n\n#### 1. \u76f4\u63a5JSON\u8f93\u5165\n\n```bash\necho '{\"file_url\": \"\u6570\u636eZIP\u7684URL\", \"measure_data\": \"\u6d4b\u91cf\u6570\u636eCSV\u7684URL\"}' | python interface.py\n```\n\n#### 2. JSON\u6587\u4ef6\u8def\u5f84\u8f93\u5165\n\n```bash\necho \"/path/to/config.json\" | python interface.py\n```\n\n### \u914d\u7f6e\u6587\u4ef6\u683c\u5f0f\n\n\u521b\u5efa `config.json` \u6587\u4ef6\uff1a\n\n```json\n{\n  \"file_url\": \"https://example.com/spectral_data.zip\",\n  \"measure_data\": \"https://example.com/ground_truth.csv\"\n}\n```\n\n### \u4f7f\u7528\u793a\u4f8b\n\n```bash\n# Windows\u8def\u5f84\uff08WSL\u73af\u5883\u81ea\u52a8\u8f6c\u6362\uff09\necho 'D:\\data\\config.json' | python interface.py\n\n# Linux\u8def\u5f84\necho '/mnt/d/data/config.json' | python interface.py\n\n# \u76f4\u63a5JSON\necho '{\"file_url\": \"https://...\", \"measure_data\": \"https://...\"}' | python interface.py\n```\n\n## \ud83d\udccb \u8f93\u51fa\u7ed3\u679c\n\n- **\u6210\u529f\u65f6**: \u8f93\u51fa\u52a0\u5bc6\u6a21\u578b\u6587\u4ef6\u7684\u7edd\u5bf9\u8def\u5f84\n- **\u5931\u8d25\u65f6**: \u8f93\u51fa `error[\u9519\u8bef\u7801]: \u9519\u8bef\u4fe1\u606f`\n- **\u65e5\u5fd7\u6587\u4ef6**: \u81ea\u52a8\u4fdd\u5b58\u5728 `./interface_output/run_\u65f6\u95f4\u6233/interface.log`\n\n## \ud83d\udd04 \u7b97\u6cd5\u66f4\u65b0\u6d41\u7a0b\n\n1. \u4fee\u6539 `model-finetune` \u5305\u4e2d\u7684\u7b97\u6cd5\u4ee3\u7801\n2. \u91cd\u65b0\u53d1\u5e03\u5305: `pip install --upgrade model-finetune`\n3. **\u56fa\u5b9a\u63a5\u53e3\u81ea\u52a8\u4f7f\u7528\u65b0\u7b97\u6cd5**\uff0c\u65e0\u9700\u4fee\u6539\n\n## \ud83d\udee0\ufe0f \u5f00\u53d1\u73af\u5883\n\n### \u4f7f\u7528 uv \u7ba1\u7406\u73af\u5883\n\n```bash\n# \u5b89\u88c5\u4f9d\u8d56\nuv sync\n\n# \u8fd0\u884c\u5f00\u53d1\u7248\u672c\nuv run python interface.py\n\n# \u8fd0\u884c\u6d4b\u8bd5\nuv run pytest tests/\n```\n\n### \u4f7f\u7528 pip \u7ba1\u7406\u73af\u5883\n\n```bash\n# \u5b89\u88c5\u5f00\u53d1\u7248\u672c\npip install -e .\n\n# \u8bbe\u7f6e\u7248\u672c\u73af\u5883\u53d8\u91cf\uff08\u5f00\u53d1\u9636\u6bb5\uff09\nexport SETUPTOOLS_SCM_PRETEND_VERSION_FOR_MODEL_FINETUNE=1.0.0\n```\n\n## \ud83d\udcc1 \u9879\u76ee\u7ed3\u6784\n\n```\nproject/\n\u251c\u2500\u2500 interface.py                    # \u56fa\u5b9a\u63a5\u53e3\u6587\u4ef6\uff08\u6c38\u4e0d\u53d8\u66f4\uff09\n\u2514\u2500\u2500 model-finetune/                # \u53ef\u66f4\u65b0\u7684\u7b97\u6cd5\u5305\n    \u251c\u2500\u2500 src/model_finetune/\n    \u2502   \u251c\u2500\u2500 main.py                # \u6838\u5fc3\u5904\u7406\u903b\u8f91\n    \u2502   \u251c\u2500\u2500 unified_interface.py   # \u7edf\u4e00\u63a5\u53e3\u5904\u7406\u5668\n    \u2502   \u251c\u2500\u2500 common_validators.py   # \u516c\u5171\u9a8c\u8bc1\u5668\n    \u2502   \u251c\u2500\u2500 data_processor.py      # \u6570\u636e\u5904\u7406\n    \u2502   \u251c\u2500\u2500 downloader.py          # \u6587\u4ef6\u4e0b\u8f7d\n    \u2502   \u251c\u2500\u2500 extractor.py           # ZIP\u89e3\u538b\n    \u2502   \u251c\u2500\u2500 data_merger.py         # \u6570\u636e\u5408\u5e76\n    \u2502   \u251c\u2500\u2500 geo_utils.py           # \u5730\u7406\u5de5\u5177\n    \u2502   \u2514\u2500\u2500 utils.py              # \u901a\u7528\u5de5\u5177\n    \u251c\u2500\u2500 tests/                     # \u6d4b\u8bd5\u6587\u4ef6\n    \u2514\u2500\u2500 pyproject.toml            # \u5305\u914d\u7f6e\n```\n\n## \ud83e\uddea \u6d4b\u8bd5\n\n```bash\n# \u57fa\u7840\u529f\u80fd\u6d4b\u8bd5\nuv run python -c \"from model_finetune import process_interface_config; print('\u5bfc\u5165\u6210\u529f')\"\n\n# \u63a5\u53e3\u6d4b\u8bd5\necho '{\"file_url\": \"test\", \"measure_data\": \"test\"}' | timeout 5 uv run python interface.py\n\n# \u5b8c\u6574\u6d4b\u8bd5\u5957\u4ef6\nuv run pytest tests/ -v\n```\n\n## \ud83d\udd27 \u914d\u7f6e\u9009\u9879\n\n### \u73af\u5883\u53d8\u91cf\n\n```bash\n# \u5f00\u53d1\u9636\u6bb5\u7248\u672c\u53f7\nexport SETUPTOOLS_SCM_PRETEND_VERSION_FOR_MODEL_FINETUNE=1.0.0\n\n# OSS\u914d\u7f6e\uff08\u5982\u4f7f\u7528\u963f\u91cc\u4e91\u5b58\u50a8\uff09\nexport OSS_ACCESS_KEY_ID=your_key_id\nexport OSS_ACCESS_KEY_SECRET=your_secret\n```\n\n### \u8c03\u8bd5\u6a21\u5f0f\n\n```bash\n# \u542f\u7528\u8c03\u8bd5\u6a21\u5f0f\npython interface.py --debug\n```\n\n## \ud83c\udd98 \u6545\u969c\u6392\u9664\n\n### \u5e38\u89c1\u95ee\u9898\n\n1. **\u8def\u5f84\u95ee\u9898**: Windows\u8def\u5f84\u5728WSL\u73af\u5883\u4e0b\u4f1a\u81ea\u52a8\u8f6c\u6362\n2. **\u7248\u672c\u95ee\u9898**: \u5f00\u53d1\u73af\u5883\u9700\u8981\u8bbe\u7f6e `SETUPTOOLS_SCM_PRETEND_VERSION`\n3. **\u6743\u9650\u95ee\u9898**: \u786e\u4fdd\u5bf9\u8f93\u51fa\u76ee\u5f55\u6709\u5199\u6743\u9650\n\n### \u65e5\u5fd7\u67e5\u770b\n\n```bash\n# \u67e5\u770b\u6700\u65b0\u65e5\u5fd7\ntail -f ./interface_output/run_*/interface.log\n```\n\n## \ud83d\udcc4 \u8bb8\u53ef\u8bc1\n\n\u672c\u9879\u76ee\u91c7\u7528 **MIT (Non-Commercial Use Only)** \u8bb8\u53ef\u8bc1\uff1a\n\n- \u2705 **\u5141\u8bb8**: \u7814\u7a76\u3001\u6559\u80b2\u3001\u4e2a\u4eba\u4f7f\u7528\n- \u274c **\u7981\u6b62**: \u4efb\u4f55\u5f62\u5f0f\u7684\u5546\u4e1a\u4f7f\u7528\n- \ud83d\udce7 **\u5546\u4e1a\u6388\u6743**: \u8bf7\u8054\u7cfb zyq1034378361@gmail.com\n\n\u8be6\u60c5\u8bf7\u67e5\u770b [LICENSE](LICENSE) \u6587\u4ef6\u3002\n\n## \ud83d\udc68\u200d\ud83d\udcbb \u4f5c\u8005\n\n**\u5468\u5143\u7426 (Yuan-Qi Zhou)**\n- \ud83d\udce7 Email: zyq1034378361@gmail.com\n- \ud83c\udf1f \u4e13\u6ce8\u4e8e\u667a\u80fd\u6570\u636e\u5904\u7406\u548c\u673a\u5668\u5b66\u4e60\n\n## \ud83e\udd1d \u8d21\u732e\n\n\u6b22\u8fce\u63d0\u4ea4 Issue \u548c Pull Request\uff01\u8bf7\u6ce8\u610f\uff1a\n- \u4fdd\u6301\u56fa\u5b9a\u63a5\u53e3\u7684\u7a33\u5b9a\u6027\n- \u7b97\u6cd5\u6539\u8fdb\u8bf7\u5728\u5305\u5185\u5b9e\u73b0\n- \u9075\u5faa\u9879\u76ee\u7684\u7f16\u7801\u89c4\u8303\n\n## \ud83d\udcde \u652f\u6301\n\n\u5982\u6709\u95ee\u9898\uff0c\u8bf7\u901a\u8fc7\u4ee5\u4e0b\u65b9\u5f0f\u8054\u7cfb\uff1a\n\n- \ud83d\udce7 **\u90ae\u7bb1**: zyq1034378361@gmail.com\n- \ud83d\udc1b **\u95ee\u9898\u53cd\u9988**: \u901a\u8fc7\u90ae\u7bb1\u8054\u7cfb\n- \ud83d\udcd6 **\u4f7f\u7528\u6587\u6863**: \u67e5\u770b\u9879\u76ee\u5185\u7684 Markdown \u6587\u6863\n\n---\n\n**\u8ba9\u6a21\u578b\u5fae\u8c03\u53d8\u5f97\u7b80\u5355\u9ad8\u6548\u54df\uff01** \ud83c\udfaf\n",
    "bugtrack_url": null,
    "license": "MIT (Non-Commercial Use Only)",
    "summary": "\u667a\u80fd\u6a21\u578b\u5fae\u8c03\u548c\u81ea\u52a8\u5efa\u6a21\u5de5\u5177\u5305 - \u4e13\u4e1a\u7684\u5149\u8c31\u6570\u636e\u5904\u7406\u548c\u673a\u5668\u5b66\u4e60\u5efa\u6a21\u89e3\u51b3\u65b9\u6848",
    "version": "1.1.0",
    "project_urls": {
        "Changelog": "https://github.com/1034378361/model-finetune/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/1034378361/model-finetune/blob/main/README.md",
        "Homepage": "https://github.com/1034378361/model-finetune",
        "Issues": "https://github.com/1034378361/model-finetune/issues",
        "Repository": "https://github.com/1034378361/model-finetune.git"
    },
    "split_keywords": [
        "model-finetune",
        " automl",
        " machine-learning",
        " fine-tuning",
        " model-optimization",
        " automated-modeling",
        " ml-pipeline",
        " spectral-analysis",
        " data-fusion",
        " geo-matching"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "a27feb71d640afc8a25ce4aec5ac0322239a12dc6d14b7bb54d02454f5f32b2a",
                "md5": "651f9c39eeecface4495633cca92b29d",
                "sha256": "39eecdd7a14cef0d34baf4c51ece04d9b60d8e29f751538e40d365a03a58db7c"
            },
            "downloads": -1,
            "filename": "model_finetune-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "651f9c39eeecface4495633cca92b29d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 65421,
            "upload_time": "2025-08-01T06:39:23",
            "upload_time_iso_8601": "2025-08-01T06:39:23.630725Z",
            "url": "https://files.pythonhosted.org/packages/a2/7f/eb71d640afc8a25ce4aec5ac0322239a12dc6d14b7bb54d02454f5f32b2a/model_finetune-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0504c6575ff3a9220073fef0229a84f94e67e5f471a3b43cf075d79560ffbca4",
                "md5": "391400d93cd5c2535df206fe388bd768",
                "sha256": "f2b92c978611677da3280cd32c9e79fe370ee923e1a3cc6299581773cd774942"
            },
            "downloads": -1,
            "filename": "model_finetune-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "391400d93cd5c2535df206fe388bd768",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 204934,
            "upload_time": "2025-08-01T06:39:24",
            "upload_time_iso_8601": "2025-08-01T06:39:24.620488Z",
            "url": "https://files.pythonhosted.org/packages/05/04/c6575ff3a9220073fef0229a84f94e67e5f471a3b43cf075d79560ffbca4/model_finetune-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-01 06:39:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "1034378361",
    "github_project": "model-finetune",
    "github_not_found": true,
    "lcname": "model-finetune"
}
        
Elapsed time: 1.23960s