modelradar


Namemodelradar JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryAspect-based Forecasting Accuracy
upload_time2024-12-21 17:48:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords data science evaluation forecasting machine learning time series
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Model Radar 🎯

A framework for aspect-based evaluation of time series forecasting models based on Nixtla's ecosystem.

## Overview

Model Radar introduces a novel aspect-based forecasting evaluation approach that goes beyond traditional aggregate metrics. Our framework enables:
- Fine-grained performance analysis across different forecasting aspects
- Better understanding of model behavior in varying conditions
- More informed model selection based on specific use case requirements

## 🚀 Getting Started

TBD

### Prerequisites

TBD

## 📑 Reference

> Cerqueira, V., Roque, L., & Soares, C. (2024). "Forecasting with Deep Learning: Beyond Average of Average of Average Performance." *arXiv preprint arXiv:2406.16590*

Check DS24 folder to reproduce the experiments published on this paper.
The main repository and package contains an updated framework.

## Contact

vcerqueira@fe.up.pt
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "modelradar",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Data Science, Evaluation, Forecasting, Machine Learning, Time Series",
    "author": null,
    "author_email": "Vitor Cerqueira <cerqueira.vitormanuel@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/38/30/a59f5729a9a7749601f284782927ea503b420c84739659ca71b5ca2478c2/modelradar-0.1.0.tar.gz",
    "platform": null,
    "description": "# Model Radar \ud83c\udfaf\n\nA framework for aspect-based evaluation of time series forecasting models based on Nixtla's ecosystem.\n\n## Overview\n\nModel Radar introduces a novel aspect-based forecasting evaluation approach that goes beyond traditional aggregate metrics. Our framework enables:\n- Fine-grained performance analysis across different forecasting aspects\n- Better understanding of model behavior in varying conditions\n- More informed model selection based on specific use case requirements\n\n## \ud83d\ude80 Getting Started\n\nTBD\n\n### Prerequisites\n\nTBD\n\n## \ud83d\udcd1 Reference\n\n> Cerqueira, V., Roque, L., & Soares, C. (2024). \"Forecasting with Deep Learning: Beyond Average of Average of Average Performance.\" *arXiv preprint arXiv:2406.16590*\n\nCheck DS24 folder to reproduce the experiments published on this paper.\nThe main repository and package contains an updated framework.\n\n## Contact\n\nvcerqueira@fe.up.pt",
    "bugtrack_url": null,
    "license": null,
    "summary": "Aspect-based Forecasting Accuracy",
    "version": "0.1.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/vcerqueira/modelradar/issues",
        "Homepage": "https://github.com/vcerqueira/modelradar"
    },
    "split_keywords": [
        "data science",
        " evaluation",
        " forecasting",
        " machine learning",
        " time series"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "aa4dbef3222522b6a677c0e8e7d989f584246eb033561aba77427f772215a32f",
                "md5": "ca510edb792d3b6c8c5865fab8a4e267",
                "sha256": "a0f0103e31e1929b5b9f0186ed07f9ea45bc0fd32b0a386b1d1e3008ad8b8505"
            },
            "downloads": -1,
            "filename": "modelradar-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ca510edb792d3b6c8c5865fab8a4e267",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 2455,
            "upload_time": "2024-12-21T17:48:44",
            "upload_time_iso_8601": "2024-12-21T17:48:44.577194Z",
            "url": "https://files.pythonhosted.org/packages/aa/4d/bef3222522b6a677c0e8e7d989f584246eb033561aba77427f772215a32f/modelradar-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3830a59f5729a9a7749601f284782927ea503b420c84739659ca71b5ca2478c2",
                "md5": "30cba18b05ef6e2a3ef7682cb45ba156",
                "sha256": "cef9b59333884c92320924d6466968c3acc15221e595733fa66998c868496f83"
            },
            "downloads": -1,
            "filename": "modelradar-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "30cba18b05ef6e2a3ef7682cb45ba156",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 1176705,
            "upload_time": "2024-12-21T17:48:47",
            "upload_time_iso_8601": "2024-12-21T17:48:47.730400Z",
            "url": "https://files.pythonhosted.org/packages/38/30/a59f5729a9a7749601f284782927ea503b420c84739659ca71b5ca2478c2/modelradar-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-21 17:48:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "vcerqueira",
    "github_project": "modelradar",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "modelradar"
}
        
Elapsed time: 1.37926s