# Model Radar 🎯
A framework for aspect-based evaluation of time series forecasting models based on Nixtla's ecosystem.
## Overview
Model Radar introduces a novel aspect-based forecasting evaluation approach that goes beyond traditional aggregate metrics. Our framework enables:
- Fine-grained performance analysis across different forecasting aspects
- Better understanding of model behavior in varying conditions
- More informed model selection based on specific use case requirements
## 🚀 Getting Started
TBD
### Prerequisites
TBD
## 📑 Reference
> Cerqueira, V., Roque, L., & Soares, C. (2024). "Forecasting with Deep Learning: Beyond Average of Average of Average Performance." *arXiv preprint arXiv:2406.16590*
Check DS24 folder to reproduce the experiments published on this paper.
The main repository and package contains an updated framework.
## Contact
vcerqueira@fe.up.pt
Raw data
{
"_id": null,
"home_page": null,
"name": "modelradar",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "Data Science, Evaluation, Forecasting, Machine Learning, Time Series",
"author": null,
"author_email": "Vitor Cerqueira <cerqueira.vitormanuel@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/38/30/a59f5729a9a7749601f284782927ea503b420c84739659ca71b5ca2478c2/modelradar-0.1.0.tar.gz",
"platform": null,
"description": "# Model Radar \ud83c\udfaf\n\nA framework for aspect-based evaluation of time series forecasting models based on Nixtla's ecosystem.\n\n## Overview\n\nModel Radar introduces a novel aspect-based forecasting evaluation approach that goes beyond traditional aggregate metrics. Our framework enables:\n- Fine-grained performance analysis across different forecasting aspects\n- Better understanding of model behavior in varying conditions\n- More informed model selection based on specific use case requirements\n\n## \ud83d\ude80 Getting Started\n\nTBD\n\n### Prerequisites\n\nTBD\n\n## \ud83d\udcd1 Reference\n\n> Cerqueira, V., Roque, L., & Soares, C. (2024). \"Forecasting with Deep Learning: Beyond Average of Average of Average Performance.\" *arXiv preprint arXiv:2406.16590*\n\nCheck DS24 folder to reproduce the experiments published on this paper.\nThe main repository and package contains an updated framework.\n\n## Contact\n\nvcerqueira@fe.up.pt",
"bugtrack_url": null,
"license": null,
"summary": "Aspect-based Forecasting Accuracy",
"version": "0.1.0",
"project_urls": {
"Bug Tracker": "https://github.com/vcerqueira/modelradar/issues",
"Homepage": "https://github.com/vcerqueira/modelradar"
},
"split_keywords": [
"data science",
" evaluation",
" forecasting",
" machine learning",
" time series"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "aa4dbef3222522b6a677c0e8e7d989f584246eb033561aba77427f772215a32f",
"md5": "ca510edb792d3b6c8c5865fab8a4e267",
"sha256": "a0f0103e31e1929b5b9f0186ed07f9ea45bc0fd32b0a386b1d1e3008ad8b8505"
},
"downloads": -1,
"filename": "modelradar-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ca510edb792d3b6c8c5865fab8a4e267",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 2455,
"upload_time": "2024-12-21T17:48:44",
"upload_time_iso_8601": "2024-12-21T17:48:44.577194Z",
"url": "https://files.pythonhosted.org/packages/aa/4d/bef3222522b6a677c0e8e7d989f584246eb033561aba77427f772215a32f/modelradar-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3830a59f5729a9a7749601f284782927ea503b420c84739659ca71b5ca2478c2",
"md5": "30cba18b05ef6e2a3ef7682cb45ba156",
"sha256": "cef9b59333884c92320924d6466968c3acc15221e595733fa66998c868496f83"
},
"downloads": -1,
"filename": "modelradar-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "30cba18b05ef6e2a3ef7682cb45ba156",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 1176705,
"upload_time": "2024-12-21T17:48:47",
"upload_time_iso_8601": "2024-12-21T17:48:47.730400Z",
"url": "https://files.pythonhosted.org/packages/38/30/a59f5729a9a7749601f284782927ea503b420c84739659ca71b5ca2478c2/modelradar-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-21 17:48:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vcerqueira",
"github_project": "modelradar",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "modelradar"
}