# modelselect
A package helps easily create an optimal linear regression model by removing the insignificant and multicollinearity predictor variables, which can help you reduce the interactive process and tedious work to run the model, estimate it, evaluate it, reestimate and reevaluate it, etc.
Developed by Shouke Wei from Deepsim Academy, Deepsim Intelligence Technology Inc. (c) 2022
## Install the package
```python
pip install modelselect
```
## import the package
```python
from modelselect import LRSelector
```
then use the `LRSelector()` directly. Or
```python
import modelselect as ms
```
then use `ms.LRSelector()`
## Document
An example: https://github.com/shoukewei/modelselect/blob/main/docs/example.ipynb
Raw data
{
"_id": null,
"home_page": "https://github.com/shoukewei/modelselect",
"name": "modelselect",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,linear regression,statsmodels,model improvement,select variables,insignificant,multicollinearity",
"author": "Shouke Wei",
"author_email": "shouke.wei@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f4/cd/1f32200c2311fbf53dea7a0e61cab635cca5558f5c3c86d10a4d6f7efdca/modelselect-0.0.1.tar.gz",
"platform": null,
"description": "# modelselect\n\nA package helps easily create an optimal linear regression model by removing the insignificant and multicollinearity predictor variables, which can help you reduce the interactive process and tedious work to run the model, estimate it, evaluate it, reestimate and reevaluate it, etc. \n\nDeveloped by Shouke Wei from Deepsim Academy, Deepsim Intelligence Technology Inc. (c) 2022\n\n## Install the package\n```python\npip install modelselect\n```\n\n## import the package\n```python\nfrom modelselect import LRSelector\n```\nthen use the `LRSelector()` directly. Or \n```python\nimport modelselect as ms\n```\nthen use `ms.LRSelector()`\n\n## Document\nAn example: https://github.com/shoukewei/modelselect/blob/main/docs/example.ipynb\n\n\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "A package helps select independent variables for traditional linear regression models",
"version": "0.0.1",
"split_keywords": [
"python",
"linear regression",
"statsmodels",
"model improvement",
"select variables",
"insignificant",
"multicollinearity"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "b7020a0d685b66bae1adb5685cf01e56",
"sha256": "6f0d5139c22fc8de80fa0343ad8126223b107eb0e4d34b3bc21ccacda2293a11"
},
"downloads": -1,
"filename": "modelselect-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b7020a0d685b66bae1adb5685cf01e56",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 2382,
"upload_time": "2022-12-24T04:36:15",
"upload_time_iso_8601": "2022-12-24T04:36:15.516477Z",
"url": "https://files.pythonhosted.org/packages/7d/d8/07e8e3d6850761b02266a735a3d133d871ed87507c82daa62bf61daf0c9e/modelselect-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "63d94fb334b432ba366b9271d725ed01",
"sha256": "9e436cbc297d884761ad1d9b67b914b39857322b5958f6bc50055001e6479a4a"
},
"downloads": -1,
"filename": "modelselect-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "63d94fb334b432ba366b9271d725ed01",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2311,
"upload_time": "2022-12-24T04:36:17",
"upload_time_iso_8601": "2022-12-24T04:36:17.484575Z",
"url": "https://files.pythonhosted.org/packages/f4/cd/1f32200c2311fbf53dea7a0e61cab635cca5558f5c3c86d10a4d6f7efdca/modelselect-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-24 04:36:17",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "shoukewei",
"github_project": "modelselect",
"lcname": "modelselect"
}