modm-data


Namemodm-data JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryEmbedded Hardware Description Processor
upload_time2025-10-26 18:45:15
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseMPL-2.0
keywords embedded hardware pdf parser
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!--webignore-->
# Semantic Hardware Description
<!--/webignore-->

This project is a collection of data processing pipelines that convert and
combine multiple sources of hardware description data into the most accurate
common representation without manual supervision.

There are many different supported input sources per hardware vendor:

- PDF technical documentation, especially datasheets and reference manuals.
- Source code and CMSIS-SVD files describing peripheral registers.
- Vendor libraries for helping with naming things canonically.
- Proprietary databases extracted from vendor tooling.

These input sources are made accessible via deterministic data pipelines before
finally merging them together. This approach has the best chance of
compensating weaknesses in each individual input source while also arbitrating
conflicts. The output formats are knowledge graphs with a shared ontology.

The resulting knowledge graphs represent a normalized and complete semantic
description of the hardware and are NOT intended to be used directly. Rather,
you should extract the data you require and convert it into a format that is
useful for your specific use case and device scope. This repository only
contains data pipeline code, therefore, if you are interested in the hardware
description data only, please use the resulting knowledge graphs directly.

> **Warning**  
> The project is still in beta and not fully functional or documented.
> Improving the documentation and flexibility of the `modm_data.pdf2html`
> submodule is the main focus of development right now.
> No output data other than HTML is currently supported.


## Installation

You can install this Python ≥3.11 project via PyPi:

```sh
pip install modm-data
```

You also need `g++` and `patch` installed and callable in your path.


## Pipelines

<!--pipelines-->
The data pipelines are implemented as Python submodules inside `modm_data`
folder and have the following structure:

```mermaid
flowchart LR
    A(PDF) -->|pdf2html| B
    B -->|html2svd| D
    B(HTML) -->|html| C
    C(Python) -->|owl| E
    D(CMSIS-SVD) -->|cmsis-svd| C
    E[OWL]
    F(CMSIS Header) -->|header2svd| D
    I(Open Pin Data) -->|cubemx| C
    G(CubeMX) -->|cubemx| C
    H(CubeHAL) -->|cubehal| C
    J -->|dl| A
    J -->|dl| F
    J -->|dl| G
    J -->|dl| H
    J -->|dl| I
    J[STMicro] -->|dl| D
```
<!--/pipelines-->

Each pipeline has its own command-line interface, please refer to the API
documentation for their advanced usage.

<!--webignore-->
## Development

For development you can install the package locally:

```sh
pip install -e ".[all]"
```

To browse the API documentation locally:

```sh
pdoc --mermaid modm_data
```

<!--inputsources-->
This project uses only publicly available data sources, choosing permissive
licenses whenever possible:

- [STM32 CMSIS header files](https://github.com/modm-io/cmsis-header-stm32): BSD-3-Clause.
- [STM32 Open Pin Data](https://github.com/STMicroelectronics/STM32_open_pin_data): BSD-3-Clause.
- [STM32 CMSIS-SVD files](https://github.com/modm-io/cmsis-svd-stm32): Apache-2.0.
- STMicro CubeMX database: ST SLA.
- STMicro PDF technical documentation: ST SLA.

You can download all input sources via `make input-sources`. Please note that it
may take a while to download ~10GB of data, mostly PDF technical documentation.
<!--/inputsources--><!--/webignore-->

## Citation

This project is a further development of a [peer-reviewed paper published in the
Journal of Systems Research (JSys)](http://dx.doi.org/10.5070/SR33162446).
Please cite this paper when referring to this project:

```bib
@article{HP23,
  author = {Hauser, Niklas and Pennekamp, Jan},
  title = {{Automatically Extracting Hardware Descriptions from PDF Technical Documentation}},
  journal = {Journal of Systems Research},
  year = {2023},
  volume = {3},
  number = {1},
  publisher = {eScholarship Publishing},
  month = {10},
  doi = {10.5070/SR33162446},
  code = {https://github.com/salkinium/pdf-data-extraction-jsys-artifact},
  code2 = {https://github.com/modm-io/modm-data},
  meta = {},
}
```

The paper itself is based on a [master thesis](https://salkinium.com/master.pdf).

<!--links--><!--/links-->

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "modm-data",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "embedded, hardware, pdf, parser",
    "author": null,
    "author_email": "Niklas Hauser <niklas@salkinium.com>",
    "download_url": "https://files.pythonhosted.org/packages/fe/a6/fe9833ed7408a97967b4f9069a8538f0d4ef901b8a3e0fdb06a17a070427/modm_data-0.0.2.tar.gz",
    "platform": null,
    "description": "<!--webignore-->\n# Semantic Hardware Description\n<!--/webignore-->\n\nThis project is a collection of data processing pipelines that convert and\ncombine multiple sources of hardware description data into the most accurate\ncommon representation without manual supervision.\n\nThere are many different supported input sources per hardware vendor:\n\n- PDF technical documentation, especially datasheets and reference manuals.\n- Source code and CMSIS-SVD files describing peripheral registers.\n- Vendor libraries for helping with naming things canonically.\n- Proprietary databases extracted from vendor tooling.\n\nThese input sources are made accessible via deterministic data pipelines before\nfinally merging them together. This approach has the best chance of\ncompensating weaknesses in each individual input source while also arbitrating\nconflicts. The output formats are knowledge graphs with a shared ontology.\n\nThe resulting knowledge graphs represent a normalized and complete semantic\ndescription of the hardware and are NOT intended to be used directly. Rather,\nyou should extract the data you require and convert it into a format that is\nuseful for your specific use case and device scope. This repository only\ncontains data pipeline code, therefore, if you are interested in the hardware\ndescription data only, please use the resulting knowledge graphs directly.\n\n> **Warning**  \n> The project is still in beta and not fully functional or documented.\n> Improving the documentation and flexibility of the `modm_data.pdf2html`\n> submodule is the main focus of development right now.\n> No output data other than HTML is currently supported.\n\n\n## Installation\n\nYou can install this Python \u22653.11 project via PyPi:\n\n```sh\npip install modm-data\n```\n\nYou also need `g++` and `patch` installed and callable in your path.\n\n\n## Pipelines\n\n<!--pipelines-->\nThe data pipelines are implemented as Python submodules inside `modm_data`\nfolder and have the following structure:\n\n```mermaid\nflowchart LR\n    A(PDF) -->|pdf2html| B\n    B -->|html2svd| D\n    B(HTML) -->|html| C\n    C(Python) -->|owl| E\n    D(CMSIS-SVD) -->|cmsis-svd| C\n    E[OWL]\n    F(CMSIS Header) -->|header2svd| D\n    I(Open Pin Data) -->|cubemx| C\n    G(CubeMX) -->|cubemx| C\n    H(CubeHAL) -->|cubehal| C\n    J -->|dl| A\n    J -->|dl| F\n    J -->|dl| G\n    J -->|dl| H\n    J -->|dl| I\n    J[STMicro] -->|dl| D\n```\n<!--/pipelines-->\n\nEach pipeline has its own command-line interface, please refer to the API\ndocumentation for their advanced usage.\n\n<!--webignore-->\n## Development\n\nFor development you can install the package locally:\n\n```sh\npip install -e \".[all]\"\n```\n\nTo browse the API documentation locally:\n\n```sh\npdoc --mermaid modm_data\n```\n\n<!--inputsources-->\nThis project uses only publicly available data sources, choosing permissive\nlicenses whenever possible:\n\n- [STM32 CMSIS header files](https://github.com/modm-io/cmsis-header-stm32): BSD-3-Clause.\n- [STM32 Open Pin Data](https://github.com/STMicroelectronics/STM32_open_pin_data): BSD-3-Clause.\n- [STM32 CMSIS-SVD files](https://github.com/modm-io/cmsis-svd-stm32): Apache-2.0.\n- STMicro CubeMX database: ST SLA.\n- STMicro PDF technical documentation: ST SLA.\n\nYou can download all input sources via `make input-sources`. Please note that it\nmay take a while to download ~10GB of data, mostly PDF technical documentation.\n<!--/inputsources--><!--/webignore-->\n\n## Citation\n\nThis project is a further development of a [peer-reviewed paper published in the\nJournal of Systems Research (JSys)](http://dx.doi.org/10.5070/SR33162446).\nPlease cite this paper when referring to this project:\n\n```bib\n@article{HP23,\n  author = {Hauser, Niklas and Pennekamp, Jan},\n  title = {{Automatically Extracting Hardware Descriptions from PDF Technical Documentation}},\n  journal = {Journal of Systems Research},\n  year = {2023},\n  volume = {3},\n  number = {1},\n  publisher = {eScholarship Publishing},\n  month = {10},\n  doi = {10.5070/SR33162446},\n  code = {https://github.com/salkinium/pdf-data-extraction-jsys-artifact},\n  code2 = {https://github.com/modm-io/modm-data},\n  meta = {},\n}\n```\n\nThe paper itself is based on a [master thesis](https://salkinium.com/master.pdf).\n\n<!--links--><!--/links-->\n",
    "bugtrack_url": null,
    "license": "MPL-2.0",
    "summary": "Embedded Hardware Description Processor",
    "version": "0.0.2",
    "project_urls": {
        "API Docs": "https://data.modm.io/api",
        "Changelog": "https://github.com/modm-io/modm-data/blob/main/CHANGELOG.md",
        "GitHub": "https://github.com/modm-io/modm-data",
        "Homepage": "https://data.modm.io"
    },
    "split_keywords": [
        "embedded",
        " hardware",
        " pdf",
        " parser"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1c9105e97cb0117ea0704bef81b694c6444fd9e9bccd61c2e8f34318497e350a",
                "md5": "d5172acd5e84ca825f117232caee728c",
                "sha256": "4cd1d520f0ad32aa31c88f57f11113f6696de6e9d043e6c250b953c4ace9426b"
            },
            "downloads": -1,
            "filename": "modm_data-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d5172acd5e84ca825f117232caee728c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 171951,
            "upload_time": "2025-10-26T18:45:14",
            "upload_time_iso_8601": "2025-10-26T18:45:14.006937Z",
            "url": "https://files.pythonhosted.org/packages/1c/91/05e97cb0117ea0704bef81b694c6444fd9e9bccd61c2e8f34318497e350a/modm_data-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fea6fe9833ed7408a97967b4f9069a8538f0d4ef901b8a3e0fdb06a17a070427",
                "md5": "3bfedd4aa8da20cbae58677bbfb62684",
                "sha256": "844e93e15ccfdf87b69fc13d32b1ede6deb23e4c3a2f1900e5822a91474b8119"
            },
            "downloads": -1,
            "filename": "modm_data-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "3bfedd4aa8da20cbae58677bbfb62684",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 125943,
            "upload_time": "2025-10-26T18:45:15",
            "upload_time_iso_8601": "2025-10-26T18:45:15.390987Z",
            "url": "https://files.pythonhosted.org/packages/fe/a6/fe9833ed7408a97967b4f9069a8538f0d4ef901b8a3e0fdb06a17a070427/modm_data-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-26 18:45:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "modm-io",
    "github_project": "modm-data",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "modm-data"
}
        
Elapsed time: 0.81637s