[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)
# MoE Mamba
Implementation of MoE Mamba from the paper: "MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts" in Pytorch and Zeta.
[PAPER LINK](https://arxiv.org/abs/2401.04081)
## Install
```bash
pip install moe-mamba
```
## Usage
### `MoEMambaBlock`
```python
import torch
from moe_mamba import MoEMambaBlock
x = torch.randn(1, 10, 512)
model = MoEMambaBlock(
dim=512,
depth=6,
d_state=128,
expand=4,
num_experts=4,
)
out = model(x)
print(out)
```
## Code Quality 🧹
- `make style` to format the code
- `make check_code_quality` to check code quality (PEP8 basically)
- `black .`
- `ruff . --fix`
## Citation
```bibtex
@misc{pióro2024moemamba,
title={MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts},
author={Maciej Pióro and Kamil Ciebiera and Krystian Król and Jan Ludziejewski and Sebastian Jaszczur},
year={2024},
eprint={2401.04081},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/MoE-Mamba",
"name": "moe-mamba",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6,<4.0",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/c4/62/24bd10853d3843c06556a28116bd4db38f01089dcc9c4db7bd5b1152cbd9/moe_mamba-0.0.3.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# MoE Mamba\nImplementation of MoE Mamba from the paper: \"MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts\" in Pytorch and Zeta. \n\n[PAPER LINK](https://arxiv.org/abs/2401.04081)\n\n\n## Install\n\n```bash\npip install moe-mamba\n```\n\n## Usage\n\n### `MoEMambaBlock` \n```python\nimport torch \nfrom moe_mamba import MoEMambaBlock\n\nx = torch.randn(1, 10, 512)\nmodel = MoEMambaBlock(\n dim=512,\n depth=6,\n d_state=128,\n expand=4,\n num_experts=4,\n)\nout = model(x)\nprint(out)\n\n```\n\n\n\n## Code Quality \ud83e\uddf9\n\n- `make style` to format the code\n- `make check_code_quality` to check code quality (PEP8 basically)\n- `black .`\n- `ruff . --fix`\n\n\n## Citation\n```bibtex\n@misc{pi\u00f3ro2024moemamba,\n title={MoE-Mamba: Efficient Selective State Space Models with Mixture of Experts}, \n author={Maciej Pi\u00f3ro and Kamil Ciebiera and Krystian Kr\u00f3l and Jan Ludziejewski and Sebastian Jaszczur},\n year={2024},\n eprint={2401.04081},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n\n```\n\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.3",
"project_urls": {
"Documentation": "https://github.com/kyegomez/MoE-Mamba",
"Homepage": "https://github.com/kyegomez/MoE-Mamba",
"Repository": "https://github.com/kyegomez/MoE-Mamba"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"optimizers",
"prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "550fc5c5ba01552ebfb72618a7d612f69602a51de4333b2f9b3b76927f61383d",
"md5": "c347b19ec36cfe08a7aae63caac28804",
"sha256": "937d8d3cf2c65058f74761228b5879a4eb7c985b15e47a572a4048ddbbc7e913"
},
"downloads": -1,
"filename": "moe_mamba-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c347b19ec36cfe08a7aae63caac28804",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6,<4.0",
"size": 5383,
"upload_time": "2024-01-22T01:53:10",
"upload_time_iso_8601": "2024-01-22T01:53:10.084540Z",
"url": "https://files.pythonhosted.org/packages/55/0f/c5c5ba01552ebfb72618a7d612f69602a51de4333b2f9b3b76927f61383d/moe_mamba-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c46224bd10853d3843c06556a28116bd4db38f01089dcc9c4db7bd5b1152cbd9",
"md5": "17110afd0e72c72d732894d033f474be",
"sha256": "abf077f44d29ef046973d47d5559525d8ddff5962a79b0590ffcb80d7438fc36"
},
"downloads": -1,
"filename": "moe_mamba-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "17110afd0e72c72d732894d033f474be",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6,<4.0",
"size": 5565,
"upload_time": "2024-01-22T01:53:11",
"upload_time_iso_8601": "2024-01-22T01:53:11.653481Z",
"url": "https://files.pythonhosted.org/packages/c4/62/24bd10853d3843c06556a28116bd4db38f01089dcc9c4db7bd5b1152cbd9/moe_mamba-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-22 01:53:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "MoE-Mamba",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": []
},
{
"name": "zetascale",
"specs": []
},
{
"name": "swarms",
"specs": []
}
],
"lcname": "moe-mamba"
}