momentum


Namemomentum JSON
Version 0.2.7 PyPI version JSON
download
home_pagehttps://github.com/microprediction/momentum
SummaryRunning estimates of moments
upload_time2022-03-05 15:30:05
maintainer
docs_urlNone
authormicroprediction
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # momentum ![tests](https://github.com/microprediction/momentum/workflows/tests/badge.svg) ![deploy](https://github.com/microprediction/momentum/workflows/deploy/badge.svg)
A trivial mini-package for computing the running univariate mean, variance, kurtosis and skew

- No dependencies ... not even numpy.
- No classes ... unless you want them.
- State is a dict, for trivial serialization. 
- Tested against scipy, creme, statistics

For multivariate covariance updating, maybe see [precise](https://github.com/microprediction/precise). 

### Install 

    pip install momentum

### Usage: running mean, var

    from momentum import var_init, var_update
    from pprint import pprint
    
    m = var_init()
    for x in [5,3,2.4,1.0,5.0]:
        m = var_update(m,x)
    pprint(m)
    
    

### Usage: running mean, var, kurtosis and skew 

    from momentum import kurtosis_init, kurtosis_update
    
    m = kurtosis_init()
    for x in [5,3,2.4,1.0,5.0]:
        m = kurtosis_update(m,x)
    pprint(m)
    
    
File an issue if you need more help using this. 
    
  
### Usage: running recency-weighted mean, var

    from momentum import rvar_init, rvar_update
    from pprint import pprint
    
    m = rvar_init(rho=0.01,n=15)
    for x in [5,3,2.4,1.0,5.0]:
        m = rvar_update(m,x)
    pprint(m)
    
This will switch from running variance to a weighted variance after 15 data points. 
    



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/microprediction/momentum",
    "name": "momentum",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "microprediction",
    "author_email": "pcotton@intechinvestments.com",
    "download_url": "https://files.pythonhosted.org/packages/9d/7c/1f52beeb73b440ecd2cdccf1898e8dbc0e796af158a890e95ddfa585f49f/momentum-0.2.7.tar.gz",
    "platform": "",
    "description": "# momentum ![tests](https://github.com/microprediction/momentum/workflows/tests/badge.svg) ![deploy](https://github.com/microprediction/momentum/workflows/deploy/badge.svg)\nA trivial mini-package for computing the running univariate mean, variance, kurtosis and skew\n\n- No dependencies ... not even numpy.\n- No classes ... unless you want them.\n- State is a dict, for trivial serialization. \n- Tested against scipy, creme, statistics\n\nFor multivariate covariance updating, maybe see [precise](https://github.com/microprediction/precise). \n\n### Install \n\n    pip install momentum\n\n### Usage: running mean, var\n\n    from momentum import var_init, var_update\n    from pprint import pprint\n    \n    m = var_init()\n    for x in [5,3,2.4,1.0,5.0]:\n        m = var_update(m,x)\n    pprint(m)\n    \n    \n\n### Usage: running mean, var, kurtosis and skew \n\n    from momentum import kurtosis_init, kurtosis_update\n    \n    m = kurtosis_init()\n    for x in [5,3,2.4,1.0,5.0]:\n        m = kurtosis_update(m,x)\n    pprint(m)\n    \n    \nFile an issue if you need more help using this. \n    \n  \n### Usage: running recency-weighted mean, var\n\n    from momentum import rvar_init, rvar_update\n    from pprint import pprint\n    \n    m = rvar_init(rho=0.01,n=15)\n    for x in [5,3,2.4,1.0,5.0]:\n        m = rvar_update(m,x)\n    pprint(m)\n    \nThis will switch from running variance to a weighted variance after 15 data points. \n    \n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Running estimates of moments",
    "version": "0.2.7",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "6696a6b37b15295f2ecb1202012dbd50",
                "sha256": "e6a86b8f44ce8df3d71bd41f0be27a1ff6b0493e0cf491c8389ffb1fd5f528b3"
            },
            "downloads": -1,
            "filename": "momentum-0.2.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6696a6b37b15295f2ecb1202012dbd50",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7013,
            "upload_time": "2022-03-05T15:30:03",
            "upload_time_iso_8601": "2022-03-05T15:30:03.597036Z",
            "url": "https://files.pythonhosted.org/packages/53/32/df99de866fe249d36288bd1993866274ee16c889fec100e335ebd3460598/momentum-0.2.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "b6c6bdd8af9da877c2123519e2e7eb02",
                "sha256": "fbb3610e3d002d4ec817b9b65117d6314a3d22fe29acb289e12842e5cfe05fa6"
            },
            "downloads": -1,
            "filename": "momentum-0.2.7.tar.gz",
            "has_sig": false,
            "md5_digest": "b6c6bdd8af9da877c2123519e2e7eb02",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5804,
            "upload_time": "2022-03-05T15:30:05",
            "upload_time_iso_8601": "2022-03-05T15:30:05.196488Z",
            "url": "https://files.pythonhosted.org/packages/9d/7c/1f52beeb73b440ecd2cdccf1898e8dbc0e796af158a890e95ddfa585f49f/momentum-0.2.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-03-05 15:30:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "microprediction",
    "github_project": "momentum",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "momentum"
}
        
Elapsed time: 0.17159s