**moocore**: Core Algorithms for Multi-Objective Optimization
=============================================================
<!-- badges: start -->
[![PyPI - Version](https://img.shields.io/pypi/v/moocore)][py-moocore-pypi]
[![PyPI - Downloads](https://img.shields.io/pypi/dm/moocore?color=blue)][py-moocore-pypi]
[![Python build status][py-build-badge]][py-build-link]
[![coverage][py-coverage-badge]][py-coverage-link]
<!-- badges: end -->
[ [**Homepage**][py-moocore-homepage] ]
[ [**GitHub**][py-moocore-github] ]
**Contributors:**
[Manuel López-Ibáñez](https://lopez-ibanez.eu),
Fergus Rooney.
---------------------------------------
Introduction
============
The goal of **moocore** is to collect fast implementations of core mathematical functions and algorithms for multi-objective optimization. These functions include:
* Identifying and filtering dominated vectors.
* Quality metrics such as (weighted) hypervolume, epsilon, IGD, etc.
* Computation of the Empirical Attainment Function. The empirical attainment function (EAF) describes the probabilistic
distribution of the outcomes obtained by a stochastic algorithm in the
objective space.
**Keywords**: empirical attainment function, summary attainment surfaces, EAF
differences, multi-objective optimization, bi-objective optimization,
performance measures, performance assessment
R package
---------
There is also a `moocore` package for R: https://multi-objective.github.io/moocore/r
[py-build-badge]: https://github.com/multi-objective/moocore/actions/workflows/python.yml/badge.svg?event=push
[py-build-link]: https://github.com/multi-objective/moocore/actions/workflows/python.yml
[py-coverage-badge]: https://codecov.io/gh/multi-objective/moocore/branch/main/graph/badge.svg?flag=python
[py-coverage-link]: https://app.codecov.io/gh/multi-objective/moocore/tree/main/python
[py-moocore-github]: https://github.com/multi-objective/moocore/tree/main/python#readme
[py-moocore-homepage]: https://multi-objective.github.io/moocore/python
[py-moocore-pypi]: https://pypi.org/project/moocore/
Raw data
{
"_id": null,
"home_page": null,
"name": "moocore",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "math, Mathematics, Multi-criteria Decision-Making, operations research, Optimization",
"author": null,
"author_email": "Manuel L\u00f3pez-Ib\u00e1\u00f1ez <manuel.lopez-ibanez@manchester.ac.uk>, Fergus Rooney <fergus.rooney@outlook.com>",
"download_url": "https://files.pythonhosted.org/packages/1e/5c/841c4b3af93407a7640d63eb49f1c6e13adab1c2f9946e28e11bc560b5b4/moocore-0.1.3.tar.gz",
"platform": null,
"description": "**moocore**: Core Algorithms for Multi-Objective Optimization\n=============================================================\n\n<!-- badges: start -->\n[![PyPI - Version](https://img.shields.io/pypi/v/moocore)][py-moocore-pypi]\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/moocore?color=blue)][py-moocore-pypi]\n[![Python build status][py-build-badge]][py-build-link]\n[![coverage][py-coverage-badge]][py-coverage-link]\n<!-- badges: end -->\n\n[ [**Homepage**][py-moocore-homepage] ]\n[ [**GitHub**][py-moocore-github] ]\n\n\n**Contributors:**\n [Manuel L\u00f3pez-Ib\u00e1\u00f1ez](https://lopez-ibanez.eu),\n Fergus Rooney.\n\n---------------------------------------\n\nIntroduction\n============\n\nThe goal of **moocore** is to collect fast implementations of core mathematical functions and algorithms for multi-objective optimization. These functions include:\n\n * Identifying and filtering dominated vectors.\n * Quality metrics such as (weighted) hypervolume, epsilon, IGD, etc.\n * Computation of the Empirical Attainment Function. The empirical attainment function (EAF) describes the probabilistic\ndistribution of the outcomes obtained by a stochastic algorithm in the\nobjective space.\n\n**Keywords**: empirical attainment function, summary attainment surfaces, EAF\ndifferences, multi-objective optimization, bi-objective optimization,\nperformance measures, performance assessment\n\n\nR package\n---------\n\nThere is also a `moocore` package for R: https://multi-objective.github.io/moocore/r\n\n\n[py-build-badge]: https://github.com/multi-objective/moocore/actions/workflows/python.yml/badge.svg?event=push\n[py-build-link]: https://github.com/multi-objective/moocore/actions/workflows/python.yml\n[py-coverage-badge]: https://codecov.io/gh/multi-objective/moocore/branch/main/graph/badge.svg?flag=python\n[py-coverage-link]: https://app.codecov.io/gh/multi-objective/moocore/tree/main/python\n[py-moocore-github]: https://github.com/multi-objective/moocore/tree/main/python#readme\n[py-moocore-homepage]: https://multi-objective.github.io/moocore/python\n[py-moocore-pypi]: https://pypi.org/project/moocore/\n",
"bugtrack_url": null,
"license": null,
"summary": "Core Algorithms for Multi-Objective Optimization",
"version": "0.1.3",
"project_urls": {
"Documentation": "https://multi-objective.github.io/moocore/python/",
"Homepage": "https://multi-objective.github.io/moocore/python/",
"Source": "https://github.com/multi-objective/moocore/",
"Tracker": "https://github.com/multi-objective/moocore/issues"
},
"split_keywords": [
"math",
" mathematics",
" multi-criteria decision-making",
" operations research",
" optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b6169eae0399edda1e8386c6831331b1407d621eed3b402164196036880de857",
"md5": "842904246321a5dfa18071025edb8ed7",
"sha256": "dd8e6bb278054fccff048d4fa254ec12c26d8af13343baa2a22d31af6fa805d5"
},
"downloads": -1,
"filename": "moocore-0.1.3-py3-none-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "842904246321a5dfa18071025edb8ed7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 456993,
"upload_time": "2024-10-28T20:27:48",
"upload_time_iso_8601": "2024-10-28T20:27:48.531642Z",
"url": "https://files.pythonhosted.org/packages/b6/16/9eae0399edda1e8386c6831331b1407d621eed3b402164196036880de857/moocore-0.1.3-py3-none-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bb372a8e7c3bde9b25866233b36e4284e5664095dd7aae9b75bcab015ae7ad04",
"md5": "bf1b12fb51f36dfb5ae3899f5d35c906",
"sha256": "1528b7aa182573c6dfac37cd877e22b23c87d9939cdb03688cbc2b5527213895"
},
"downloads": -1,
"filename": "moocore-0.1.3-py3-none-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "bf1b12fb51f36dfb5ae3899f5d35c906",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 403809,
"upload_time": "2024-10-28T20:27:50",
"upload_time_iso_8601": "2024-10-28T20:27:50.281000Z",
"url": "https://files.pythonhosted.org/packages/bb/37/2a8e7c3bde9b25866233b36e4284e5664095dd7aae9b75bcab015ae7ad04/moocore-0.1.3-py3-none-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "896c13785b75a6f53d17695271078e89c3db8228b886f539a44cd0078dad8e32",
"md5": "d7195d47ade61833f0ae427772d425d7",
"sha256": "4421f06b8407d091ad19ad0c9d2f7c6323d91b7f43102fa3e8e750c3ba9abfc6"
},
"downloads": -1,
"filename": "moocore-0.1.3-py3-none-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "d7195d47ade61833f0ae427772d425d7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 394354,
"upload_time": "2024-10-28T20:27:52",
"upload_time_iso_8601": "2024-10-28T20:27:52.747351Z",
"url": "https://files.pythonhosted.org/packages/89/6c/13785b75a6f53d17695271078e89c3db8228b886f539a44cd0078dad8e32/moocore-0.1.3-py3-none-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e86688f5647ec393485659b3f6887484156f1c338fd4d9e0ea8a5e3cd9899a80",
"md5": "9de445e94c28f120bcea4bb6fbc72af4",
"sha256": "c5acdda34c6b947a909c15bfb885f54962dd812dedb7b64f1c0a9092a0519116"
},
"downloads": -1,
"filename": "moocore-0.1.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "9de445e94c28f120bcea4bb6fbc72af4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 575585,
"upload_time": "2024-10-28T20:27:54",
"upload_time_iso_8601": "2024-10-28T20:27:54.827653Z",
"url": "https://files.pythonhosted.org/packages/e8/66/88f5647ec393485659b3f6887484156f1c338fd4d9e0ea8a5e3cd9899a80/moocore-0.1.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b8a3632610c492b3be8ece68bddf7f49f41e036950d6391d5ac95de88d7afc9c",
"md5": "796ac6f93348b8fb63c1e6e069b5f384",
"sha256": "24ba71f70568b8ad984b56c376553ca16ffdef47f757417f028009c05709cf77"
},
"downloads": -1,
"filename": "moocore-0.1.3-py3-none-musllinux_1_1_x86_64.whl",
"has_sig": false,
"md5_digest": "796ac6f93348b8fb63c1e6e069b5f384",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 436339,
"upload_time": "2024-10-28T20:27:56",
"upload_time_iso_8601": "2024-10-28T20:27:56.255522Z",
"url": "https://files.pythonhosted.org/packages/b8/a3/632610c492b3be8ece68bddf7f49f41e036950d6391d5ac95de88d7afc9c/moocore-0.1.3-py3-none-musllinux_1_1_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0488374b730639935bf282ef463bbd7d05f81195a6cce111ec6aa50e856542eb",
"md5": "aa1d9eb71a2e44bbf7dae6c2928a1bfb",
"sha256": "4d2a3c8a554bae4470f6f2effbf0dfc3290632c11fc6fe7472d1c93538dd2645"
},
"downloads": -1,
"filename": "moocore-0.1.3-py3-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "aa1d9eb71a2e44bbf7dae6c2928a1bfb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 441980,
"upload_time": "2024-10-28T20:27:57",
"upload_time_iso_8601": "2024-10-28T20:27:57.549993Z",
"url": "https://files.pythonhosted.org/packages/04/88/374b730639935bf282ef463bbd7d05f81195a6cce111ec6aa50e856542eb/moocore-0.1.3-py3-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1e5c841c4b3af93407a7640d63eb49f1c6e13adab1c2f9946e28e11bc560b5b4",
"md5": "e7427e963d7b7dbb490a9a16028d39c0",
"sha256": "c745913da35281d2975670ed9b3008430acc2a8335845f716458cd9113e2e849"
},
"downloads": -1,
"filename": "moocore-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "e7427e963d7b7dbb490a9a16028d39c0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 320455,
"upload_time": "2024-10-28T20:27:58",
"upload_time_iso_8601": "2024-10-28T20:27:58.989017Z",
"url": "https://files.pythonhosted.org/packages/1e/5c/841c4b3af93407a7640d63eb49f1c6e13adab1c2f9946e28e11bc560b5b4/moocore-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-28 20:27:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "multi-objective",
"github_project": "moocore",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "moocore"
}