morl-baselines


Namemorl-baselines JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummaryImplementations of multi-objective reinforcement learning (MORL) algorithms.
upload_time2024-05-03 16:33:27
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License
keywords reinforcement learning multi-objective rl ai gymnasium
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
![tests](https://github.com/LucasAlegre/morl-baselines/workflows/Python%20tests/badge.svg)
[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](https://github.com/LucasAlegre/morl-baselines/blob/main/LICENSE)
[![Discord](https://img.shields.io/discord/999693014618362036?label=discord)](https://discord.gg/ygmkfnBvKA)
[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)

<img src="docs/_static/_images/mo_cheetah.gif" alt="Multiple policies" align="right" width="50%"/>

# MORL-Baselines

<!-- start elevator-pitch -->

MORL-Baselines is a library of Multi-Objective Reinforcement Learning (MORL) algorithms.
This repository aims to contain reliable MORL algorithms implementations in PyTorch.

It strictly follows [MO-Gymnasium](https://github.com/Farama-Foundation/mo-gymnasium) API, which differs from the standard [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) API only in that the environment returns a numpy array as the reward.

For details on multi-objective MDPs (MOMDPs) and other MORL definitions, we suggest reading [A practical guide to multi-objective reinforcement learning and planning](https://link.springer.com/article/10.1007/s10458-022-09552-y). An overview of some techniques used in various MORL algorithms is also provided in [Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework](https://doi.org/10.1613/jair.1.15702).

A tutorial on MO-Gymnasium and MORL-Baselines is also available: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ByjuUp8-CJeh1giPOACqPGiglPxDnlSq?usp=sharing)

<!-- end elevator-pitch -->

## Features

<!-- start features -->

* Single and multi-policy algorithms under both SER and ESR criteria are implemented.
* All algorithms follow the [MO-Gymnasium](https://www.github.com/Farama-Foundation/mo-gymnasium) API.
* Performances are automatically reported in [Weights and Biases](https://wandb.ai/) dashboards.
* Linting and formatting are enforced by pre-commit hooks.
* Code is well documented.
* All algorithms are automatically tested.
* Utility functions are provided e.g. pareto pruning, experience buffers, etc.
* Performances have been tested and reported in a reproducible manner.
* Hyperparameter optimization available.

<!-- end features -->


## Implemented Algorithms

<!-- start algos-list -->

| **Name**                                                                                                                                                             | Single/Multi-policy | ESR/SER                     | Observation space | Action space          | Paper                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| [GPI-LS + GPI-PD](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/gpi_pd/gpi_pd.py)                                              | Multi               | SER                         | Continuous        | Discrete / Continuous | [Paper and Supplementary Materials](https://arxiv.org/abs/2301.07784)                                                                                    |
| [MORL/D](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/morld/morld.py)                                                         | Multi               | /                           | /                 | /                     | [Paper](https://doi.org/10.1613/jair.1.15702)                                                                                                                |
| [Envelope Q-Learning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/envelope/envelope.py)                                      | Multi               | SER                         | Continuous        | Discrete              | [Paper](https://arxiv.org/pdf/1908.08342.pdf)                                                                                                            |
| [CAPQL](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/capql/capql.py)                                                          | Multi               | SER                         | Continuous        | Continuous            | [Paper](https://openreview.net/pdf?id=TjEzIsyEsQ6)                                                                                                       |
| [PGMORL](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/pgmorl/pgmorl.py) <sup>[1](#f1)</sup>                                   | Multi               | SER                         | Continuous        | Continuous            | [Paper](https://people.csail.mit.edu/jiex/papers/PGMORL/paper.pdf) / [Supplementary Materials](https://people.csail.mit.edu/jiex/papers/PGMORL/supp.pdf) |
| [Pareto Conditioned Networks (PCN)](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/pcn/pcn.py)                                  | Multi               | SER/ESR <sup>[2](#f2)</sup> | Continuous        | Discrete / Continuous | [Paper](https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1110.pdf)                                                                                    |
| [Pareto Q-Learning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/pareto_q_learning/pql.py)                                    | Multi               | SER                         | Discrete          | Discrete              | [Paper](https://jmlr.org/papers/volume15/vanmoffaert14a/vanmoffaert14a.pdf)                                                                              |
| [MO Q learning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/single_policy/ser/mo_q_learning.py)                                           | Single              | SER                         | Discrete          | Discrete              | [Paper](https://www.researchgate.net/publication/235698665_Scalarized_Multi-Objective_Reinforcement_Learning_Novel_Design_Techniques)                    |
| [MPMOQLearning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/multi_policy_moqlearning/mp_mo_q_learning.py)  (outer loop MOQL) | Multi               | SER                         | Discrete          | Discrete              | [Paper](https://www.researchgate.net/publication/235698665_Scalarized_Multi-Objective_Reinforcement_Learning_Novel_Design_Techniques)                    |
| [Optimistic Linear Support (OLS)](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/ols/ols.py)                                    | Multi               | SER                         | /                 | /                     | Section 3.3 of the [thesis](http://roijers.info/pub/thesis.pdf)                                                                                          |
| [Expected Utility Policy Gradient (EUPG)](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/single_policy/esr/eupg.py)                          | Single              | ESR                         | Discrete          | Discrete              | [Paper](https://www.researchgate.net/publication/328718263_Multi-objective_Reinforcement_Learning_for_the_Expected_Utility_of_the_Return)                |

:warning: Some of the algorithms have limited features.

<b id="f1">1</b>: Currently, PGMORL is limited to environments with 2 objectives.

<b id="f2">2</b>: PCN assumes environments with deterministic transitions.

<!-- end algos-list -->

## Benchmarking

<!-- start benchmark -->
MORL-Baselines participates to [Open RL Benchmark](https://github.com/openrlbenchmark/openrlbenchmark) which contains tracked experiments from popular RL libraries such as [cleanRL](https://github.com/vwxyzjn/cleanrl) and [Stable Baselines 3](https://github.com/DLR-RM/stable-baselines3).


We have run experiments of our algorithms on various environments from [MO-Gymnasium](https://www.github.com/Farama-Foundation/mo-gymnasium). The results can be found here: https://wandb.ai/openrlbenchmark/MORL-Baselines. An issue tracking all the settings is available at [#43](https://github.com/LucasAlegre/morl-baselines/issues/43). Some design documentation for the experimentation protocol are also available on our [Documentation website](https://lucasalegre.github.io/morl-baselines/algos/performances/).
<!-- end benchmark -->

An example visualization of our dashboards with Pareto support is shown below:
<img src="docs/_static/_images/wandb.png" alt="WandB dashboards"/>

## Structure

<!-- start structure -->
As much as possible, this repo tries to follow the single-file implementation rule for all algorithms. The repo's structure is as follows:

* `examples/` contains a set of examples to use MORL Baselines with [MO-Gymnasium](https://www.github.com/Farama-Foundation/mo-gymnasium) environments.
* `common/` contains the implementation recurring concepts: replay buffers, neural nets, etc. See the [documentation](https://lucasalegre.github.io/morl-baselines/) for more details.
* `multi_policy/` contains the implementations of multi-policy algorithms.
* `single_policy/` contains the implementations of single-policy algorithms (ESR and SER).

<!-- end structure -->


## Citing the Project

<!-- start citing -->
If you use MORL-Baselines in your research, please cite our [NeurIPS 2023 paper](https://openreview.net/pdf?id=jfwRLudQyj):

```bibtex
@inproceedings{felten_toolkit_2023,
	author = {Felten, Florian and Alegre, Lucas N. and Now{\'e}, Ann and Bazzan, Ana L. C. and Talbi, El Ghazali and Danoy, Gr{\'e}goire and Silva, Bruno Castro da},
	title = {A Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforcement Learning},
	booktitle = {Proceedings of the 37th Conference on Neural Information Processing Systems ({NeurIPS} 2023)},
	year = {2023}
}
```

<!-- end citing -->

## Maintainers

<!-- start maintainers -->
MORL-Baselines is currently maintained by [Florian Felten](https://ffelten.github.io/) (@ffelten) and [Lucas N. Alegre](https://www.inf.ufrgs.br/~lnalegre/) (@LucasAlegre).
<!-- end maintainers -->

## Contributing

<!-- start contributing -->
This repository is open to contributions and we are always happy to receive new algorithms, bug fixes, or features. If you want to contribute, you can join our [Discord server](https://discord.gg/ygmkfnBvKA) and discuss your ideas with us. You can also open an issue or a pull request directly.

<!-- end contributing -->

## Acknowledgements
<!-- start acknowledgements -->
* Willem Röpke, for his implementation of Pareto Q-Learning (@wilrop)
* Mathieu Reymond, for providing us with the original implementation of PCN.
* Denis Steckelmacher and Conor F. Hayes, for providing us with the original implementation of EUPG.
<!-- end acknowledgements -->

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "morl-baselines",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "Reinforcement Learning, Multi-Objective, RL, AI, gymnasium",
    "author": null,
    "author_email": "Florian Felten & Lucas Alegre <lucasnale@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/cb/46/746134220094d4c90433d658162e2dbc4b1caa40648d398aa30e07cc1dce/morl-baselines-1.0.0.tar.gz",
    "platform": null,
    "description": "[![Project Status: Active \u2013 The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)\n![tests](https://github.com/LucasAlegre/morl-baselines/workflows/Python%20tests/badge.svg)\n[![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](https://github.com/LucasAlegre/morl-baselines/blob/main/LICENSE)\n[![Discord](https://img.shields.io/discord/999693014618362036?label=discord)](https://discord.gg/ygmkfnBvKA)\n[![pre-commit](https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white)](https://pre-commit.com/)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)\n\n<img src=\"docs/_static/_images/mo_cheetah.gif\" alt=\"Multiple policies\" align=\"right\" width=\"50%\"/>\n\n# MORL-Baselines\n\n<!-- start elevator-pitch -->\n\nMORL-Baselines is a library of Multi-Objective Reinforcement Learning (MORL) algorithms.\nThis repository aims to contain reliable MORL algorithms implementations in PyTorch.\n\nIt strictly follows [MO-Gymnasium](https://github.com/Farama-Foundation/mo-gymnasium) API, which differs from the standard [Gymnasium](https://github.com/Farama-Foundation/Gymnasium) API only in that the environment returns a numpy array as the reward.\n\nFor details on multi-objective MDPs (MOMDPs) and other MORL definitions, we suggest reading [A practical guide to multi-objective reinforcement learning and planning](https://link.springer.com/article/10.1007/s10458-022-09552-y). An overview of some techniques used in various MORL algorithms is also provided in [Multi-Objective Reinforcement Learning Based on Decomposition: A Taxonomy and Framework](https://doi.org/10.1613/jair.1.15702).\n\nA tutorial on MO-Gymnasium and MORL-Baselines is also available: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ByjuUp8-CJeh1giPOACqPGiglPxDnlSq?usp=sharing)\n\n<!-- end elevator-pitch -->\n\n## Features\n\n<!-- start features -->\n\n* Single and multi-policy algorithms under both SER and ESR criteria are implemented.\n* All algorithms follow the [MO-Gymnasium](https://www.github.com/Farama-Foundation/mo-gymnasium) API.\n* Performances are automatically reported in [Weights and Biases](https://wandb.ai/) dashboards.\n* Linting and formatting are enforced by pre-commit hooks.\n* Code is well documented.\n* All algorithms are automatically tested.\n* Utility functions are provided e.g. pareto pruning, experience buffers, etc.\n* Performances have been tested and reported in a reproducible manner.\n* Hyperparameter optimization available.\n\n<!-- end features -->\n\n\n## Implemented Algorithms\n\n<!-- start algos-list -->\n\n| **Name**                                                                                                                                                             | Single/Multi-policy | ESR/SER                     | Observation space | Action space          | Paper                                                                                                                                                    |\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|-------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [GPI-LS + GPI-PD](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/gpi_pd/gpi_pd.py)                                              | Multi               | SER                         | Continuous        | Discrete / Continuous | [Paper and Supplementary Materials](https://arxiv.org/abs/2301.07784)                                                                                    |\n| [MORL/D](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/morld/morld.py)                                                         | Multi               | /                           | /                 | /                     | [Paper](https://doi.org/10.1613/jair.1.15702)                                                                                                                |\n| [Envelope Q-Learning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/envelope/envelope.py)                                      | Multi               | SER                         | Continuous        | Discrete              | [Paper](https://arxiv.org/pdf/1908.08342.pdf)                                                                                                            |\n| [CAPQL](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/capql/capql.py)                                                          | Multi               | SER                         | Continuous        | Continuous            | [Paper](https://openreview.net/pdf?id=TjEzIsyEsQ6)                                                                                                       |\n| [PGMORL](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/pgmorl/pgmorl.py) <sup>[1](#f1)</sup>                                   | Multi               | SER                         | Continuous        | Continuous            | [Paper](https://people.csail.mit.edu/jiex/papers/PGMORL/paper.pdf) / [Supplementary Materials](https://people.csail.mit.edu/jiex/papers/PGMORL/supp.pdf) |\n| [Pareto Conditioned Networks (PCN)](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/pcn/pcn.py)                                  | Multi               | SER/ESR <sup>[2](#f2)</sup> | Continuous        | Discrete / Continuous | [Paper](https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p1110.pdf)                                                                                    |\n| [Pareto Q-Learning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/pareto_q_learning/pql.py)                                    | Multi               | SER                         | Discrete          | Discrete              | [Paper](https://jmlr.org/papers/volume15/vanmoffaert14a/vanmoffaert14a.pdf)                                                                              |\n| [MO Q learning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/single_policy/ser/mo_q_learning.py)                                           | Single              | SER                         | Discrete          | Discrete              | [Paper](https://www.researchgate.net/publication/235698665_Scalarized_Multi-Objective_Reinforcement_Learning_Novel_Design_Techniques)                    |\n| [MPMOQLearning](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/multi_policy_moqlearning/mp_mo_q_learning.py)  (outer loop MOQL) | Multi               | SER                         | Discrete          | Discrete              | [Paper](https://www.researchgate.net/publication/235698665_Scalarized_Multi-Objective_Reinforcement_Learning_Novel_Design_Techniques)                    |\n| [Optimistic Linear Support (OLS)](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/multi_policy/ols/ols.py)                                    | Multi               | SER                         | /                 | /                     | Section 3.3 of the [thesis](http://roijers.info/pub/thesis.pdf)                                                                                          |\n| [Expected Utility Policy Gradient (EUPG)](https://github.com/LucasAlegre/morl-baselines/blob/main/morl_baselines/single_policy/esr/eupg.py)                          | Single              | ESR                         | Discrete          | Discrete              | [Paper](https://www.researchgate.net/publication/328718263_Multi-objective_Reinforcement_Learning_for_the_Expected_Utility_of_the_Return)                |\n\n:warning: Some of the algorithms have limited features.\n\n<b id=\"f1\">1</b>: Currently, PGMORL is limited to environments with 2 objectives.\n\n<b id=\"f2\">2</b>: PCN assumes environments with deterministic transitions.\n\n<!-- end algos-list -->\n\n## Benchmarking\n\n<!-- start benchmark -->\nMORL-Baselines participates to [Open RL Benchmark](https://github.com/openrlbenchmark/openrlbenchmark) which contains tracked experiments from popular RL libraries such as [cleanRL](https://github.com/vwxyzjn/cleanrl) and [Stable Baselines 3](https://github.com/DLR-RM/stable-baselines3).\n\n\nWe have run experiments of our algorithms on various environments from [MO-Gymnasium](https://www.github.com/Farama-Foundation/mo-gymnasium). The results can be found here: https://wandb.ai/openrlbenchmark/MORL-Baselines. An issue tracking all the settings is available at [#43](https://github.com/LucasAlegre/morl-baselines/issues/43). Some design documentation for the experimentation protocol are also available on our [Documentation website](https://lucasalegre.github.io/morl-baselines/algos/performances/).\n<!-- end benchmark -->\n\nAn example visualization of our dashboards with Pareto support is shown below:\n<img src=\"docs/_static/_images/wandb.png\" alt=\"WandB dashboards\"/>\n\n## Structure\n\n<!-- start structure -->\nAs much as possible, this repo tries to follow the single-file implementation rule for all algorithms. The repo's structure is as follows:\n\n* `examples/` contains a set of examples to use MORL Baselines with [MO-Gymnasium](https://www.github.com/Farama-Foundation/mo-gymnasium) environments.\n* `common/` contains the implementation recurring concepts: replay buffers, neural nets, etc. See the [documentation](https://lucasalegre.github.io/morl-baselines/) for more details.\n* `multi_policy/` contains the implementations of multi-policy algorithms.\n* `single_policy/` contains the implementations of single-policy algorithms (ESR and SER).\n\n<!-- end structure -->\n\n\n## Citing the Project\n\n<!-- start citing -->\nIf you use MORL-Baselines in your research, please cite our [NeurIPS 2023 paper](https://openreview.net/pdf?id=jfwRLudQyj):\n\n```bibtex\n@inproceedings{felten_toolkit_2023,\n\tauthor = {Felten, Florian and Alegre, Lucas N. and Now{\\'e}, Ann and Bazzan, Ana L. C. and Talbi, El Ghazali and Danoy, Gr{\\'e}goire and Silva, Bruno Castro da},\n\ttitle = {A Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforcement Learning},\n\tbooktitle = {Proceedings of the 37th Conference on Neural Information Processing Systems ({NeurIPS} 2023)},\n\tyear = {2023}\n}\n```\n\n<!-- end citing -->\n\n## Maintainers\n\n<!-- start maintainers -->\nMORL-Baselines is currently maintained by [Florian Felten](https://ffelten.github.io/) (@ffelten) and [Lucas N. Alegre](https://www.inf.ufrgs.br/~lnalegre/) (@LucasAlegre).\n<!-- end maintainers -->\n\n## Contributing\n\n<!-- start contributing -->\nThis repository is open to contributions and we are always happy to receive new algorithms, bug fixes, or features. If you want to contribute, you can join our [Discord server](https://discord.gg/ygmkfnBvKA) and discuss your ideas with us. You can also open an issue or a pull request directly.\n\n<!-- end contributing -->\n\n## Acknowledgements\n<!-- start acknowledgements -->\n* Willem R\u00f6pke, for his implementation of Pareto Q-Learning (@wilrop)\n* Mathieu Reymond, for providing us with the original implementation of PCN.\n* Denis Steckelmacher and Conor F. Hayes, for providing us with the original implementation of EUPG.\n<!-- end acknowledgements -->\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Implementations of multi-objective reinforcement learning (MORL) algorithms.",
    "version": "1.0.0",
    "project_urls": {
        "Bug Report": "https://github.com/LucasAlegre/morl-baselines/issues",
        "Documentation": "https://lucasalegre.github.io/morl-baselines/",
        "Homepage": "https://lucasalegre.github.io/morl-baselines/",
        "Repository": "https://github.com/LucasAlegre/morl-baselines"
    },
    "split_keywords": [
        "reinforcement learning",
        " multi-objective",
        " rl",
        " ai",
        " gymnasium"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "979b2ba5881f43de4a84177046f2527a9686c12e0574aed2c000ef1595000c6d",
                "md5": "05a2658d538e83ff73690c60ed882745",
                "sha256": "966db5e2a080c4b1314f6ea6ccfab42875519e5ef8a93898d01c401cbdc55642"
            },
            "downloads": -1,
            "filename": "morl_baselines-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "05a2658d538e83ff73690c60ed882745",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 143249,
            "upload_time": "2024-05-03T16:33:25",
            "upload_time_iso_8601": "2024-05-03T16:33:25.133189Z",
            "url": "https://files.pythonhosted.org/packages/97/9b/2ba5881f43de4a84177046f2527a9686c12e0574aed2c000ef1595000c6d/morl_baselines-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb46746134220094d4c90433d658162e2dbc4b1caa40648d398aa30e07cc1dce",
                "md5": "af3fe1e0ed767e8518f7ba5037908f44",
                "sha256": "54db64cf2fe455b289777e1164ee4a9961cdc8526e5eff0c65f0ab3983119844"
            },
            "downloads": -1,
            "filename": "morl-baselines-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "af3fe1e0ed767e8518f7ba5037908f44",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 121539,
            "upload_time": "2024-05-03T16:33:27",
            "upload_time_iso_8601": "2024-05-03T16:33:27.807599Z",
            "url": "https://files.pythonhosted.org/packages/cb/46/746134220094d4c90433d658162e2dbc4b1caa40648d398aa30e07cc1dce/morl-baselines-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-03 16:33:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "LucasAlegre",
    "github_project": "morl-baselines",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "morl-baselines"
}
        
Elapsed time: 0.44744s