morph-kgc


Namemorph-kgc JSON
Version 2.8.0 PyPI version JSON
download
home_pageNone
SummaryPowerful [R2]RML engine to create RDF knowledge graphs from heterogeneous data sources.
upload_time2024-06-04 14:57:25
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords data integration knowledge graph morph-kgc r2rml rdf rml rml-star
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
<img src="https://raw.githubusercontent.com/morph-kgc/morph-kgc/main/logo/logo.png" height="100" alt="morph">
</p>

[![License](https://img.shields.io/pypi/l/morph-kgc.svg)](https://github.com/morph-kgc/morph-kgc/blob/main/LICENSE)
[![DOI](https://zenodo.org/badge/311956260.svg?style=flat)](https://zenodo.org/badge/latestdoi/311956260)
[![Latest PyPI version](https://img.shields.io/pypi/v/morph-kgc?style=flat)](https://pypi.python.org/pypi/morph-kgc)
[![Python Version](https://img.shields.io/pypi/pyversions/morph-kgc.svg)](https://pypi.python.org/pypi/morph-kgc)
[![PyPI status](https://img.shields.io:/pypi/status/morph-kgc?)](https://pypi.python.org/pypi/morph-kgc)
[![build](https://github.com/morph-kgc/morph-kgc/actions/workflows/ci.yml/badge.svg)](https://github.com/morph-kgc/morph-kgc/actions/workflows/ci.yml)
[![Documentation Status](https://readthedocs.org/projects/morph-kgc/badge/?version=latest)](https://morph-kgc.readthedocs.io/en/stable/?badge=latest)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ByFx_NOEfTZeaJ1Wtw3UwTH3H3-Sye2O?usp=sharing)

**Morph-KGC** is an engine that constructs **[RDF](https://www.w3.org/TR/rdf11-concepts/)** knowledge graphs from heterogeneous data sources with the **[R2RML](https://www.w3.org/TR/r2rml/)** and **[RML](https://w3id.org/rml/core/spec)** mapping languages. Morph-KGC is built on top of [pandas](https://pandas.pydata.org/) and it leverages *mapping partitions* to significantly reduce execution times and memory consumption for large data sources.

## Features :sparkles:

- Supports the **[R2RML](https://www.w3.org/TR/r2rml/)** and **[RML](https://w3id.org/rml/core/spec)** mapping languages.
- User-friendly mappings with **[YARRRML](https://rml.io/yarrrml/spec/)**.
- Transformation functions with **[RML-FNML](https://w3id.org/rml/fnml/spec)**, including **Python user-defined functions**.
- [RDF-star](https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html) generation with **[RML-star](https://w3id.org/rml/star/spec)**.
- **[RML views](https://2023.eswc-conferences.org/wp-content/uploads/2023/05/paper_Arenas-Guerrero_2023_Boosting.pdf)** over tabular data sources and [JSON](https://www.json.org) files.
- Integration with **[RDFLib](https://rdflib.readthedocs.io)**, **[Oxigraph](https://pyoxigraph.readthedocs.io/en)** and [Kafka](https://kafka-python.readthedocs.io).
- **Optimized** to materialize large knowledge graphs.
- **Remote** data and mapping files.
- Input data formats:
    - **Relational databases**: [MySQL](https://www.mysql.com/), [PostgreSQL](https://www.postgresql.org/), [Oracle](https://www.oracle.com/database/), [Microsoft SQL Server](https://www.microsoft.com/sql-server), [MariaDB](https://mariadb.org/), [SQLite](https://www.sqlite.org).
    - **Tabular files**: [CSV](https://en.wikipedia.org/wiki/Comma-separated_values), [TSV](https://en.wikipedia.org/wiki/Tab-separated_values), [Excel](https://www.microsoft.com/en-us/microsoft-365/excel), [Parquet](https://parquet.apache.org/documentation), [Feather](https://arrow.apache.org/docs/python/feather.html), [ORC](https://orc.apache.org/), [Stata](https://www.stata.com/), [SAS](https://www.sas.com), [SPSS](https://www.ibm.com/analytics/spss-statistics-software), [ODS](https://en.wikipedia.org/wiki/OpenDocument).
    - **Hierarchical files**: [JSON](https://www.json.org), [XML](https://www.w3.org/TR/xml/).
    - **In-memory data structures**: [Python Dictionaries](https://docs.python.org/3/tutorial/datastructures.html#dictionaries), [DataFrames](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html).
    - **Cloud data lake solutions**: [Databricks](https://www.databricks.com/).
    - **Property graph databases**: [Neo4j](https://neo4j.com/), [Kùzu](https://kuzudb.com).

## Documentation :bookmark_tabs:

**[Read the documentation](https://morph-kgc.readthedocs.io/en/stable/documentation/)**.

## Tutorial :woman_teacher:

Learn quickly with the tutorial in **[Google Colaboratory](https://colab.research.google.com/drive/1ByFx_NOEfTZeaJ1Wtw3UwTH3H3-Sye2O?usp=sharing)**!

## Getting Started :rocket:

**[PyPi](https://pypi.org/project/morph-kgc/)** is the fastest way to install Morph-KGC:
```bash
pip install morph-kgc
```

We recommend to use [virtual environments](https://docs.python.org/3/library/venv.html#) to install Morph-KGC.

To run the engine via **command line** you just need to execute the following:
```bash
python3 -m morph_kgc config.ini
```

Check the **[documentation](https://morph-kgc.readthedocs.io/endocumentation/#configuration)** to see how to generate the configuration **INI file**. **[Here](https://github.com/morph-kgc/morph-kgc/blob/main/examples/configuration-file/default_config.ini)** you can also see an example INI file.

It is also possible to run Morph-KGC as a **library** with **[RDFLib](https://rdflib.readthedocs.io)** and **[Oxigraph](https://pyoxigraph.readthedocs.io/en)**:
```python
import morph_kgc

# generate the triples and load them to an RDFLib graph
g_rdflib = morph_kgc.materialize('/path/to/config.ini')
# work with the RDFLib graph
q_res = g_rdflib.query('SELECT DISTINCT ?classes WHERE { ?s a ?classes }')

# generate the triples and load them to Oxigraph
g_oxigraph = morph_kgc.materialize_oxigraph('/path/to/config.ini')
# work with Oxigraph
q_res = g_oxigraph.query('SELECT DISTINCT ?classes WHERE { ?s a ?classes }')

# the methods above also accept the config as a string
config = """
            [DataSource1]
            mappings: /path/to/mapping/mapping_file.rml.ttl
            db_url: mysql+pymysql://user:password@localhost:3306/db_name
         """
g_rdflib = morph_kgc.materialize(config)
```

## License :unlock:

Morph-KGC is available under the **[Apache License 2.0](https://github.com/morph-kgc/morph-kgc/blob/main/LICENSE)**.

## Author & Contact :mailbox_with_mail:

- **[Julián Arenas-Guerrero](https://github.com/arenas-guerrero-julian/) - [julian.arenas.guerrero@upm.es](mailto:julian.arenas.guerrero@upm.es)**

*[Ontology Engineering Group](https://oeg.fi.upm.es)*, *[Universidad Politécnica de Madrid](https://www.upm.es/internacional)*.

## Citing :speech_balloon:

If you used Morph-KGC in your work, please cite the **[SWJ paper](https://www.doi.org/10.3233/SW-223135)**:

```bib
@article{arenas2024morph,
  title     = {{Morph-KGC: Scalable knowledge graph materialization with mapping partitions}},
  author    = {Arenas-Guerrero, Julián and Chaves-Fraga, David and Toledo, Jhon and Pérez, María S. and Corcho, Oscar},
  journal   = {Semantic Web},
  publisher = {IOS Press},
  issn      = {2210-4968},
  year      = {2024},
  doi       = {10.3233/SW-223135},
  volume    = {15},
  number    = {1},
  pages     = {1-20}
}
```

## Sponsor :shield:

<p align="center">
<img src="https://github.com/morph-kgc/morph-kgc-docs/blob/main/docs/assets/BASF.png" height="100" alt="BASF">
</p>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "morph-kgc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Data Integration, Knowledge Graph, Morph-KGC, R2RML, RDF, RML, RML-star",
    "author": null,
    "author_email": "Juli\u00e1n Arenas-Guerrero <julian.arenas.guerrero@upm.es>",
    "download_url": "https://files.pythonhosted.org/packages/dc/fd/8abfb6aa0dafd1b06939268d7380df3de36609b373d06e50ac219834fdbf/morph_kgc-2.8.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n<img src=\"https://raw.githubusercontent.com/morph-kgc/morph-kgc/main/logo/logo.png\" height=\"100\" alt=\"morph\">\n</p>\n\n[![License](https://img.shields.io/pypi/l/morph-kgc.svg)](https://github.com/morph-kgc/morph-kgc/blob/main/LICENSE)\n[![DOI](https://zenodo.org/badge/311956260.svg?style=flat)](https://zenodo.org/badge/latestdoi/311956260)\n[![Latest PyPI version](https://img.shields.io/pypi/v/morph-kgc?style=flat)](https://pypi.python.org/pypi/morph-kgc)\n[![Python Version](https://img.shields.io/pypi/pyversions/morph-kgc.svg)](https://pypi.python.org/pypi/morph-kgc)\n[![PyPI status](https://img.shields.io:/pypi/status/morph-kgc?)](https://pypi.python.org/pypi/morph-kgc)\n[![build](https://github.com/morph-kgc/morph-kgc/actions/workflows/ci.yml/badge.svg)](https://github.com/morph-kgc/morph-kgc/actions/workflows/ci.yml)\n[![Documentation Status](https://readthedocs.org/projects/morph-kgc/badge/?version=latest)](https://morph-kgc.readthedocs.io/en/stable/?badge=latest)\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ByFx_NOEfTZeaJ1Wtw3UwTH3H3-Sye2O?usp=sharing)\n\n**Morph-KGC** is an engine that constructs **[RDF](https://www.w3.org/TR/rdf11-concepts/)** knowledge graphs from heterogeneous data sources with the **[R2RML](https://www.w3.org/TR/r2rml/)** and **[RML](https://w3id.org/rml/core/spec)** mapping languages. Morph-KGC is built on top of [pandas](https://pandas.pydata.org/) and it leverages *mapping partitions* to significantly reduce execution times and memory consumption for large data sources.\n\n## Features :sparkles:\n\n- Supports the **[R2RML](https://www.w3.org/TR/r2rml/)** and **[RML](https://w3id.org/rml/core/spec)** mapping languages.\n- User-friendly mappings with **[YARRRML](https://rml.io/yarrrml/spec/)**.\n- Transformation functions with **[RML-FNML](https://w3id.org/rml/fnml/spec)**, including **Python user-defined functions**.\n- [RDF-star](https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html) generation with **[RML-star](https://w3id.org/rml/star/spec)**.\n- **[RML views](https://2023.eswc-conferences.org/wp-content/uploads/2023/05/paper_Arenas-Guerrero_2023_Boosting.pdf)** over tabular data sources and [JSON](https://www.json.org) files.\n- Integration with **[RDFLib](https://rdflib.readthedocs.io)**, **[Oxigraph](https://pyoxigraph.readthedocs.io/en)** and [Kafka](https://kafka-python.readthedocs.io).\n- **Optimized** to materialize large knowledge graphs.\n- **Remote** data and mapping files.\n- Input data formats:\n    - **Relational databases**: [MySQL](https://www.mysql.com/), [PostgreSQL](https://www.postgresql.org/), [Oracle](https://www.oracle.com/database/), [Microsoft SQL Server](https://www.microsoft.com/sql-server), [MariaDB](https://mariadb.org/), [SQLite](https://www.sqlite.org).\n    - **Tabular files**: [CSV](https://en.wikipedia.org/wiki/Comma-separated_values), [TSV](https://en.wikipedia.org/wiki/Tab-separated_values), [Excel](https://www.microsoft.com/en-us/microsoft-365/excel), [Parquet](https://parquet.apache.org/documentation), [Feather](https://arrow.apache.org/docs/python/feather.html), [ORC](https://orc.apache.org/), [Stata](https://www.stata.com/), [SAS](https://www.sas.com), [SPSS](https://www.ibm.com/analytics/spss-statistics-software), [ODS](https://en.wikipedia.org/wiki/OpenDocument).\n    - **Hierarchical files**: [JSON](https://www.json.org), [XML](https://www.w3.org/TR/xml/).\n    - **In-memory data structures**: [Python Dictionaries](https://docs.python.org/3/tutorial/datastructures.html#dictionaries), [DataFrames](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html).\n    - **Cloud data lake solutions**: [Databricks](https://www.databricks.com/).\n    - **Property graph databases**: [Neo4j](https://neo4j.com/), [K\u00f9zu](https://kuzudb.com).\n\n## Documentation :bookmark_tabs:\n\n**[Read the documentation](https://morph-kgc.readthedocs.io/en/stable/documentation/)**.\n\n## Tutorial :woman_teacher:\n\nLearn quickly with the tutorial in **[Google Colaboratory](https://colab.research.google.com/drive/1ByFx_NOEfTZeaJ1Wtw3UwTH3H3-Sye2O?usp=sharing)**!\n\n## Getting Started :rocket:\n\n**[PyPi](https://pypi.org/project/morph-kgc/)** is the fastest way to install Morph-KGC:\n```bash\npip install morph-kgc\n```\n\nWe recommend to use [virtual environments](https://docs.python.org/3/library/venv.html#) to install Morph-KGC.\n\nTo run the engine via **command line** you just need to execute the following:\n```bash\npython3 -m morph_kgc config.ini\n```\n\nCheck the **[documentation](https://morph-kgc.readthedocs.io/endocumentation/#configuration)** to see how to generate the configuration **INI file**. **[Here](https://github.com/morph-kgc/morph-kgc/blob/main/examples/configuration-file/default_config.ini)** you can also see an example INI file.\n\nIt is also possible to run Morph-KGC as a **library** with **[RDFLib](https://rdflib.readthedocs.io)** and **[Oxigraph](https://pyoxigraph.readthedocs.io/en)**:\n```python\nimport morph_kgc\n\n# generate the triples and load them to an RDFLib graph\ng_rdflib = morph_kgc.materialize('/path/to/config.ini')\n# work with the RDFLib graph\nq_res = g_rdflib.query('SELECT DISTINCT ?classes WHERE { ?s a ?classes }')\n\n# generate the triples and load them to Oxigraph\ng_oxigraph = morph_kgc.materialize_oxigraph('/path/to/config.ini')\n# work with Oxigraph\nq_res = g_oxigraph.query('SELECT DISTINCT ?classes WHERE { ?s a ?classes }')\n\n# the methods above also accept the config as a string\nconfig = \"\"\"\n            [DataSource1]\n            mappings: /path/to/mapping/mapping_file.rml.ttl\n            db_url: mysql+pymysql://user:password@localhost:3306/db_name\n         \"\"\"\ng_rdflib = morph_kgc.materialize(config)\n```\n\n## License :unlock:\n\nMorph-KGC is available under the **[Apache License 2.0](https://github.com/morph-kgc/morph-kgc/blob/main/LICENSE)**.\n\n## Author & Contact :mailbox_with_mail:\n\n- **[Juli\u00e1n Arenas-Guerrero](https://github.com/arenas-guerrero-julian/) - [julian.arenas.guerrero@upm.es](mailto:julian.arenas.guerrero@upm.es)**\n\n*[Ontology Engineering Group](https://oeg.fi.upm.es)*, *[Universidad Polit\u00e9cnica de Madrid](https://www.upm.es/internacional)*.\n\n## Citing :speech_balloon:\n\nIf you used Morph-KGC in your work, please cite the **[SWJ paper](https://www.doi.org/10.3233/SW-223135)**:\n\n```bib\n@article{arenas2024morph,\n  title     = {{Morph-KGC: Scalable knowledge graph materialization with mapping partitions}},\n  author    = {Arenas-Guerrero, Juli\u00e1n and Chaves-Fraga, David and Toledo, Jhon and P\u00e9rez, Mar\u00eda S. and Corcho, Oscar},\n  journal   = {Semantic Web},\n  publisher = {IOS Press},\n  issn      = {2210-4968},\n  year      = {2024},\n  doi       = {10.3233/SW-223135},\n  volume    = {15},\n  number    = {1},\n  pages     = {1-20}\n}\n```\n\n## Sponsor :shield:\n\n<p align=\"center\">\n<img src=\"https://github.com/morph-kgc/morph-kgc-docs/blob/main/docs/assets/BASF.png\" height=\"100\" alt=\"BASF\">\n</p>\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Powerful [R2]RML engine to create RDF knowledge graphs from heterogeneous data sources.",
    "version": "2.8.0",
    "project_urls": {
        "CI": "https://github.com/morph-kgc/morph-kgc/actions",
        "Documentation": "https://morph-kgc.readthedocs.io",
        "History": "https://github.com/morph-kgc/morph-kgc/releases",
        "Homepage": "https://morph-kgc.readthedocs.io",
        "Source": "https://github.com/morph-kgc/morph-kgc",
        "Tracker": "https://github.com/morph-kgc/morph-kgc/issues"
    },
    "split_keywords": [
        "data integration",
        " knowledge graph",
        " morph-kgc",
        " r2rml",
        " rdf",
        " rml",
        " rml-star"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "da5337a1044855158daae154f7e41fe58947d37b70e00c3a3dee346dc7d39591",
                "md5": "6a78b043b44ed7e182132a46203c517c",
                "sha256": "d47624de183db6a78b41e8bae4a0264d6e8f908c17137017ab3435e28a66f46b"
            },
            "downloads": -1,
            "filename": "morph_kgc-2.8.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6a78b043b44ed7e182132a46203c517c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 55320,
            "upload_time": "2024-06-04T14:57:23",
            "upload_time_iso_8601": "2024-06-04T14:57:23.196924Z",
            "url": "https://files.pythonhosted.org/packages/da/53/37a1044855158daae154f7e41fe58947d37b70e00c3a3dee346dc7d39591/morph_kgc-2.8.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dcfd8abfb6aa0dafd1b06939268d7380df3de36609b373d06e50ac219834fdbf",
                "md5": "776f5d4afdf606f96fdc44ab98c7b2a7",
                "sha256": "1d95eeaa01fa9a272444e0d18f04151ff2be769bf9c816228fcb98f3f4e35b3c"
            },
            "downloads": -1,
            "filename": "morph_kgc-2.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "776f5d4afdf606f96fdc44ab98c7b2a7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 218861,
            "upload_time": "2024-06-04T14:57:25",
            "upload_time_iso_8601": "2024-06-04T14:57:25.415464Z",
            "url": "https://files.pythonhosted.org/packages/dc/fd/8abfb6aa0dafd1b06939268d7380df3de36609b373d06e50ac219834fdbf/morph_kgc-2.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-04 14:57:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "morph-kgc",
    "github_project": "morph-kgc",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "morph-kgc"
}
        
Elapsed time: 3.71329s