morpheus-torch


Namemorpheus-torch JSON
Version 0.0.7 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/MORPHEUS-1
SummaryMorpheus - Pytorch
upload_time2024-01-28 13:57:39
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# Morpheus 1

![Morphesus transformer](morpheus.jpeg)

Implementation of "MORPHEUS-1" from Prophetic AI and "The world’s first multi-modal generative ultrasonic transformer designed to induce and stabilize lucid dreams. "





## Installation

```bash
pip install morpheus-torch
```

# Usage
- The input is FRMI and EEG tensors.

- FRMI shape is (batch_size, in_channels, D, H, W)

- EEG Embedding is [batch_size, channels, time_samples]

```python
# Importing the torch library
import torch

# Importing the Morpheus model from the morpheus_torch package
from morpheus_torch.model import Morpheus

# Creating an instance of the Morpheus model with specified parameters
model = Morpheus(
    dim=128,  # Dimension of the model
    heads=4,  # Number of attention heads
    depth=2,  # Number of transformer layers
    dim_head=32,  # Dimension of each attention head
    dropout=0.1,  # Dropout rate
    num_channels=32,  # Number of input channels
    conv_channels=32,  # Number of channels in convolutional layers
    kernel_size=3,  # Kernel size for convolutional layers
    in_channels=1,  # Number of input channels for convolutional layers
    out_channels=32,  # Number of output channels for convolutional layers
    stride=1,  # Stride for convolutional layers
    padding=1,  # Padding for convolutional layers
    ff_mult=4,  # Multiplier for feed-forward layer dimension
    scatter = False, # Whether to scatter to 4d representing spatial dimensions
)

# Creating random tensors for input data
frmi = torch.randn(1, 1, 32, 32, 32)  # Random tensor for FRMI data
eeg = torch.randn(1, 32, 128)  # Random tensor for EEG data

# Passing the input data through the model to get the output
output = model(frmi, eeg)

# Printing the shape of the output tensor
print(output.shape)


```



### Code Quality 🧹

- `make style` to format the code
- `make check_code_quality` to check code quality (PEP8 basically)
- `black .`
- `ruff . --fix`

# License
MIT

# Todo
- [ ] Implement the scatter in the end of the decoder to output spatial outputs which are 4d?

- [x] Implement a full model with the depth of the decoder layers

- [ ] Change all the MHAs to Multi Query Attentions

- [ ] Double check popular brain scan EEG and FRMI AI papers to double check tensor shape


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/MORPHEUS-1",
    "name": "morpheus-torch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/7f/c6/9983dcc8a51eb55fd14ff59bb49bb0f591e940837a885c60ae8dacb91aac/morpheus_torch-0.0.7.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# Morpheus 1\n\n![Morphesus transformer](morpheus.jpeg)\n\nImplementation of \"MORPHEUS-1\" from Prophetic AI and \"The world\u2019s first multi-modal generative ultrasonic transformer designed to induce and stabilize lucid dreams. \"\n\n\n\n\n\n## Installation\n\n```bash\npip install morpheus-torch\n```\n\n# Usage\n- The input is FRMI and EEG tensors.\n\n- FRMI shape is (batch_size, in_channels, D, H, W)\n\n- EEG Embedding is [batch_size, channels, time_samples]\n\n```python\n# Importing the torch library\nimport torch\n\n# Importing the Morpheus model from the morpheus_torch package\nfrom morpheus_torch.model import Morpheus\n\n# Creating an instance of the Morpheus model with specified parameters\nmodel = Morpheus(\n    dim=128,  # Dimension of the model\n    heads=4,  # Number of attention heads\n    depth=2,  # Number of transformer layers\n    dim_head=32,  # Dimension of each attention head\n    dropout=0.1,  # Dropout rate\n    num_channels=32,  # Number of input channels\n    conv_channels=32,  # Number of channels in convolutional layers\n    kernel_size=3,  # Kernel size for convolutional layers\n    in_channels=1,  # Number of input channels for convolutional layers\n    out_channels=32,  # Number of output channels for convolutional layers\n    stride=1,  # Stride for convolutional layers\n    padding=1,  # Padding for convolutional layers\n    ff_mult=4,  # Multiplier for feed-forward layer dimension\n    scatter = False, # Whether to scatter to 4d representing spatial dimensions\n)\n\n# Creating random tensors for input data\nfrmi = torch.randn(1, 1, 32, 32, 32)  # Random tensor for FRMI data\neeg = torch.randn(1, 32, 128)  # Random tensor for EEG data\n\n# Passing the input data through the model to get the output\noutput = model(frmi, eeg)\n\n# Printing the shape of the output tensor\nprint(output.shape)\n\n\n```\n\n\n\n### Code Quality \ud83e\uddf9\n\n- `make style` to format the code\n- `make check_code_quality` to check code quality (PEP8 basically)\n- `black .`\n- `ruff . --fix`\n\n# License\nMIT\n\n# Todo\n- [ ] Implement the scatter in the end of the decoder to output spatial outputs which are 4d?\n\n- [x] Implement a full model with the depth of the decoder layers\n\n- [ ] Change all the MHAs to Multi Query Attentions\n\n- [ ] Double check popular brain scan EEG and FRMI AI papers to double check tensor shape\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Morpheus - Pytorch",
    "version": "0.0.7",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/MORPHEUS-1",
        "Homepage": "https://github.com/kyegomez/MORPHEUS-1",
        "Repository": "https://github.com/kyegomez/MORPHEUS-1"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "30e821e82a7d86e5a787f5d03df28ee121c318e3b58f3a751bd9bfe63d4c3f30",
                "md5": "73c4d30f05cc498423fe4a06d1df2bcf",
                "sha256": "8d68497c60e135ac27319be04ce0c3e53280e0a115e702fde58f23ee0929b617"
            },
            "downloads": -1,
            "filename": "morpheus_torch-0.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "73c4d30f05cc498423fe4a06d1df2bcf",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 6573,
            "upload_time": "2024-01-28T13:57:38",
            "upload_time_iso_8601": "2024-01-28T13:57:38.428674Z",
            "url": "https://files.pythonhosted.org/packages/30/e8/21e82a7d86e5a787f5d03df28ee121c318e3b58f3a751bd9bfe63d4c3f30/morpheus_torch-0.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7fc69983dcc8a51eb55fd14ff59bb49bb0f591e940837a885c60ae8dacb91aac",
                "md5": "244ce76ff7284fc5115d8f2b7f6ca2b5",
                "sha256": "2fab521e949149b742369928d8e42a198a3e1e5375603c8162c0c6b4370995c3"
            },
            "downloads": -1,
            "filename": "morpheus_torch-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "244ce76ff7284fc5115d8f2b7f6ca2b5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 6566,
            "upload_time": "2024-01-28T13:57:39",
            "upload_time_iso_8601": "2024-01-28T13:57:39.997593Z",
            "url": "https://files.pythonhosted.org/packages/7f/c6/9983dcc8a51eb55fd14ff59bb49bb0f591e940837a885c60ae8dacb91aac/morpheus_torch-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-28 13:57:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "MORPHEUS-1",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "morpheus-torch"
}
        
Elapsed time: 0.38205s