moverscore


Namemoverscore JSON
Version 1.0.3 PyPI version JSON
download
home_pagehttps://github.com/AIPHES/emnlp19-moverscore
SummaryMoverScore: Evaluating text generation with contextualized embeddings and earth mover distance
upload_time2020-04-09 00:13:03
maintainer
docs_urlNone
authorWei Zhao
requires_python>=3
licenseApache License 2.0
keywords machine translation evaluation nlp natural language processing computational linguistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            MoverScore is a semantic-based evaluation metric for text generation tasks, e.g., machine translation, text summarization, image captioning, question answering and etc, where the system and reference texts are encoded by contextualized word embeddings finetuned on Multi-Natural-Language-Inference, then the Earth Mover Distance is leveraged to compute the semantic distance by comparing two sets of embeddings resp. to the system and reference text
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/AIPHES/emnlp19-moverscore",
    "name": "moverscore",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "andyweizhao1@gmail.com",
    "keywords": "machine translation, evaluation, NLP, natural language processing, computational linguistics",
    "author": "Wei Zhao",
    "author_email": "andyweizhao1@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d7/66/5ac942903a4d2d316f6c1df716e047e34fb0f9bfc7e70d44dab995708e9d/moverscore-1.0.3.tar.gz",
    "platform": "",
    "description": "MoverScore is a semantic-based evaluation metric for text generation tasks, e.g., machine translation, text summarization, image captioning, question answering and etc, where the system and reference texts are encoded by contextualized word embeddings finetuned on Multi-Natural-Language-Inference, then the Earth Mover Distance is leveraged to compute the semantic distance by comparing two sets of embeddings resp. to the system and reference text",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "MoverScore: Evaluating text generation with contextualized embeddings and earth mover distance",
    "version": "1.0.3",
    "project_urls": {
        "Homepage": "https://github.com/AIPHES/emnlp19-moverscore"
    },
    "split_keywords": [
        "machine translation",
        " evaluation",
        " nlp",
        " natural language processing",
        " computational linguistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7665ac942903a4d2d316f6c1df716e047e34fb0f9bfc7e70d44dab995708e9d",
                "md5": "bae152b4d93bf5e8429db331d734e0f6",
                "sha256": "99be483d512d4548a2191543f8c7dd6727d83163f92ded2d1958657b177479b8"
            },
            "downloads": -1,
            "filename": "moverscore-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "bae152b4d93bf5e8429db331d734e0f6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 7665,
            "upload_time": "2020-04-09T00:13:03",
            "upload_time_iso_8601": "2020-04-09T00:13:03.150968Z",
            "url": "https://files.pythonhosted.org/packages/d7/66/5ac942903a4d2d316f6c1df716e047e34fb0f9bfc7e70d44dab995708e9d/moverscore-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-04-09 00:13:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "AIPHES",
    "github_project": "emnlp19-moverscore",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "moverscore"
}
        
Elapsed time: 0.14884s