Name | mpbn JSON |
Version |
3.8
JSON |
| download |
home_page | https://github.com/bnediction/mpbn |
Summary | Simple implementation of Most Permissive Boolean networks |
upload_time | 2024-08-28 13:46:19 |
maintainer | None |
docs_url | None |
author | Loïc Paulevé |
requires_python | None |
license | CeCILL |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
The `mpbn` Python module offers a simple implementation of reachability and attractor analysis (minimal trap spaces) in *Most Permissive Boolean Networks* ([doi:10.1038/s41467-020-18112-5](https://doi.org/10.1038/s41467-020-18112-5)). The `mpbn` Python module also offers a *Most Permissive* simulator, which provides trajectory sampling and computes attractor propensities (see paper [Variable-Depth Simulation of Most Permissive Boolean Networks](https://link.springer.com/chapter/10.1007/978-3-031-15034-0_7) for more details).
It is built on the `minibn` module from [colomoto-jupyter](https://github.com/colomoto/colomoto-jupyter) which allows importation of Boolean networks in many formats. See http://colomoto.org/notebook.
## Installation
### CoLoMoTo Notebook environment
`mpbn` is distributed in the [CoLoMoTo docker](http://colomoto.org/notebook).
### Using pip
```
pip install mpbn
```
### Using conda
```
conda install -c colomoto -c potassco mpbn
```
## Usage
### Command line
- Enumeration of fixed points and attractors:
```
mpbn -h
```
- Simulation:
```
mpbn-sim -h
```
### Python interface
Documentation is available at https://mpbn.readthedocs.io.
Example notebooks:
* https://nbviewer.org/github/bnediction/mpbn/tree/master/examples/
* http://doi.org/10.5281/zenodo.3719097
For the simulation:
* https://nbviewer.org/github/bnediction/mpbn/blob/master/examples/Simulation.ipynb
[1]: https://arxiv.org/abs/1808.10240
Raw data
{
"_id": null,
"home_page": "https://github.com/bnediction/mpbn",
"name": "mpbn",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Lo\u00efc Paulev\u00e9",
"author_email": "loic.pauleve@labri.fr",
"download_url": "https://files.pythonhosted.org/packages/62/16/3796afbdedd99a5c8a7f47bbbeacd6d9f0aa8c403e9e85274ce3724d6e2c/mpbn-3.8.tar.gz",
"platform": null,
"description": "\nThe `mpbn` Python module offers a simple implementation of reachability and attractor analysis (minimal trap spaces) in *Most Permissive Boolean Networks* ([doi:10.1038/s41467-020-18112-5](https://doi.org/10.1038/s41467-020-18112-5)). The `mpbn` Python module also offers a *Most Permissive* simulator, which provides trajectory sampling and computes attractor propensities (see paper [Variable-Depth Simulation of Most Permissive Boolean Networks](https://link.springer.com/chapter/10.1007/978-3-031-15034-0_7) for more details).\n\nIt is built on the `minibn` module from [colomoto-jupyter](https://github.com/colomoto/colomoto-jupyter) which allows importation of Boolean networks in many formats. See http://colomoto.org/notebook.\n\n## Installation\n\n### CoLoMoTo Notebook environment\n\n`mpbn` is distributed in the [CoLoMoTo docker](http://colomoto.org/notebook).\n\n### Using pip\n\n```\npip install mpbn\n```\n\n### Using conda\n```\nconda install -c colomoto -c potassco mpbn\n```\n\n## Usage\n\n### Command line\n\n- Enumeration of fixed points and attractors:\n```\nmpbn -h\n```\n\n- Simulation:\n```\nmpbn-sim -h\n```\n\n### Python interface\n\nDocumentation is available at https://mpbn.readthedocs.io.\n\nExample notebooks:\n* https://nbviewer.org/github/bnediction/mpbn/tree/master/examples/\n* http://doi.org/10.5281/zenodo.3719097\n\nFor the simulation:\n* https://nbviewer.org/github/bnediction/mpbn/blob/master/examples/Simulation.ipynb\n\n\n[1]: https://arxiv.org/abs/1808.10240\n",
"bugtrack_url": null,
"license": "CeCILL",
"summary": "Simple implementation of Most Permissive Boolean networks",
"version": "3.8",
"project_urls": {
"Homepage": "https://github.com/bnediction/mpbn"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4d77a06e97d34eaf014c32c08b34d32ca63d2e59dab0dc1010c81aea96d8a85c",
"md5": "6ec00132a961fda2fd9e392f626278b1",
"sha256": "f2c7d697f6733def5972344c9238299f1aba94ad195a98a73e665f52dfef0cec"
},
"downloads": -1,
"filename": "mpbn-3.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6ec00132a961fda2fd9e392f626278b1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 19856,
"upload_time": "2024-08-28T13:46:17",
"upload_time_iso_8601": "2024-08-28T13:46:17.606836Z",
"url": "https://files.pythonhosted.org/packages/4d/77/a06e97d34eaf014c32c08b34d32ca63d2e59dab0dc1010c81aea96d8a85c/mpbn-3.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "62163796afbdedd99a5c8a7f47bbbeacd6d9f0aa8c403e9e85274ce3724d6e2c",
"md5": "b628decbfc2a2f68beabec1cca96e02d",
"sha256": "0ec869578bf210756f1dda42427780c9ad1133ec33efad8971124fc4f72136ea"
},
"downloads": -1,
"filename": "mpbn-3.8.tar.gz",
"has_sig": false,
"md5_digest": "b628decbfc2a2f68beabec1cca96e02d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 16162,
"upload_time": "2024-08-28T13:46:19",
"upload_time_iso_8601": "2024-08-28T13:46:19.071215Z",
"url": "https://files.pythonhosted.org/packages/62/16/3796afbdedd99a5c8a7f47bbbeacd6d9f0aa8c403e9e85274ce3724d6e2c/mpbn-3.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-28 13:46:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "bnediction",
"github_project": "mpbn",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mpbn"
}