MPIPartition
============
.. image:: https://img.shields.io/pypi/v/mpipartition.svg
:target: https://pypi.python.org/pypi/mpipartition
.. image:: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/pypi.yml/badge.svg
:target: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/pypi.yml
.. image:: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/sphinx.yml/badge.svg
:target: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/sphinx.yml
A python module for MPI volume decomposition and particle distribution
* Free software: MIT license
* Documentation: https://argonnecpac.github.io/MPIPartition
* Repository: https://github.com/ArgonneCPAC/MPIPartition
Features
--------
* Cartesian partitioning of a cubic volume (arbitrary dimensions) among MPI ranks
* Equal area decomposition of the spherical shell (S2) among MPI ranks
* distributing particle-data among ranks to the corresponding subvolume / surface segment
* overloading particle-data at rank boundaries ("ghost particles")
Installation
------------
Installing from the PyPI repository:
.. code-block:: bash
pip install mpipartition
Installing the development version from the GIT repository
.. code-block:: bash
git clone https://github.com/ArgonneCPAC/mpipartition.git
cd mpipartition
python setup.py develop
Requirements
------------
These packages will be automatically installed if they are not already present:
* Python >= 3.8
* `mpi4py <https://mpi4py.readthedocs.io/en/stable/>`_: MPI for Python
* `numpy <https://numpy.org/>`_: Python array library
* `numba <https://numba.pydata.org/>`_: Python JIT compiler
Basic Usage
-----------
Check the `documentation <https://argonnecpac.github.io/MPIPartition>`_ for
an in-depth explanation / documentation.
.. code-block:: python
# this code goes into mpipartition_example.py
from mpipartition import Partition, distribute, overload
import numpy as np
# create a partition of the unit cube with available MPI ranks
box_size = 1.
partition = Partition()
if partition.rank == 0:
print(f"Number of ranks: {partition.nranks}")
print(f"Volume decomposition: {partition.decomposition}")
# create random data
nparticles_local = 1000
data = {
"x": np.random.uniform(0, 1, nparticles_local),
"y": np.random.uniform(0, 1, nparticles_local),
"z": np.random.uniform(0, 1, nparticles_local)
}
# distribute data to ranks assigned to corresponding subvolume
data = distribute(partition, box_size, data, ('x', 'y', 'z'))
# overload "edge" of each subvolume by 0.05
data = overload(partition, box_size, data, 0.05, ('x', 'y', 'z'))
This code can then be executed with ``mpi``:
.. code-block:: bash
mpirun -n 10 python mpipartition_example.py
--------
A more applied example, using halo catalogs from a
`HACC <https://cpac.hep.anl.gov/projects/hacc/>`_ cosmological simulation (in
the `GenericIO <https://git.cels.anl.gov/hacc/genericio>`_ data format):
.. code-block:: python
from mpipartition import Partition, distribute, overload
import numpy as np
import pygio
# create a partition with available MPI ranks
box_size = 64. # box size in Mpc/h
partition = Partition(3) # by default, the dimension is 3
# read GenericIO data in parallel
data = pygio.read_genericio("m000p-499.haloproperties")
# distribute
data = distribute(partition, box_size, data, [f"fof_halo_center_{x}" for x in "xyz"])
# mark "owned" data with rank (allows differentiating owned and overloaded data)
data["status"] = partition.rank * np.ones(len(data["fof_halo_center_x"]), dtype=np.uint16)
# overload by 4Mpc/h
data = overload(partition, box_size, data, 4., [f"fof_halo_center_{x}" for x in "xyz"])
# now we can do analysis such as 2pt correlation functions (up to 4Mpc/h)
# or neighbor finding, etc.
Raw data
{
"_id": null,
"home_page": "https://github.com/ArgonneCPAC/MPIPartition",
"name": "mpipartition",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "MPI, mpi4py, scientific computing, parallel computing",
"author": "Michael Buehlmann",
"author_email": "buehlmann.michi@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/3d/b7/6e3dacaadc1e682c51e894a66146470f42db7cd2ce39c580f9f8b0dc9f5a/mpipartition-1.4.0.tar.gz",
"platform": null,
"description": "MPIPartition\n============\n\n\n.. image:: https://img.shields.io/pypi/v/mpipartition.svg\n :target: https://pypi.python.org/pypi/mpipartition\n\n.. image:: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/pypi.yml/badge.svg\n :target: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/pypi.yml\n\n.. image:: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/sphinx.yml/badge.svg\n :target: https://github.com/ArgonneCPAC/MPIPartition/actions/workflows/sphinx.yml\n\nA python module for MPI volume decomposition and particle distribution\n\n\n* Free software: MIT license\n* Documentation: https://argonnecpac.github.io/MPIPartition\n* Repository: https://github.com/ArgonneCPAC/MPIPartition\n\n\nFeatures\n--------\n\n* Cartesian partitioning of a cubic volume (arbitrary dimensions) among MPI ranks\n* Equal area decomposition of the spherical shell (S2) among MPI ranks\n* distributing particle-data among ranks to the corresponding subvolume / surface segment\n* overloading particle-data at rank boundaries (\"ghost particles\")\n\n\n\nInstallation\n------------\n\nInstalling from the PyPI repository:\n\n.. code-block:: bash\n\n pip install mpipartition\n\nInstalling the development version from the GIT repository\n\n.. code-block:: bash\n\n git clone https://github.com/ArgonneCPAC/mpipartition.git\n cd mpipartition\n python setup.py develop\n\n\nRequirements\n------------\n\nThese packages will be automatically installed if they are not already present:\n\n* Python >= 3.8\n* `mpi4py <https://mpi4py.readthedocs.io/en/stable/>`_: MPI for Python\n* `numpy <https://numpy.org/>`_: Python array library\n* `numba <https://numba.pydata.org/>`_: Python JIT compiler\n\nBasic Usage\n-----------\nCheck the `documentation <https://argonnecpac.github.io/MPIPartition>`_ for\nan in-depth explanation / documentation.\n\n.. code-block:: python\n\n # this code goes into mpipartition_example.py\n\n from mpipartition import Partition, distribute, overload\n import numpy as np\n\n # create a partition of the unit cube with available MPI ranks\n box_size = 1.\n partition = Partition()\n\n if partition.rank == 0:\n print(f\"Number of ranks: {partition.nranks}\")\n print(f\"Volume decomposition: {partition.decomposition}\")\n\n # create random data\n nparticles_local = 1000\n data = {\n \"x\": np.random.uniform(0, 1, nparticles_local),\n \"y\": np.random.uniform(0, 1, nparticles_local),\n \"z\": np.random.uniform(0, 1, nparticles_local)\n }\n\n # distribute data to ranks assigned to corresponding subvolume\n data = distribute(partition, box_size, data, ('x', 'y', 'z'))\n\n # overload \"edge\" of each subvolume by 0.05\n data = overload(partition, box_size, data, 0.05, ('x', 'y', 'z'))\n\nThis code can then be executed with ``mpi``:\n\n.. code-block:: bash\n\n mpirun -n 10 python mpipartition_example.py\n\n--------\n\nA more applied example, using halo catalogs from a\n`HACC <https://cpac.hep.anl.gov/projects/hacc/>`_ cosmological simulation (in\nthe `GenericIO <https://git.cels.anl.gov/hacc/genericio>`_ data format):\n\n.. code-block:: python\n\n from mpipartition import Partition, distribute, overload\n import numpy as np\n import pygio\n\n # create a partition with available MPI ranks\n box_size = 64. # box size in Mpc/h\n partition = Partition(3) # by default, the dimension is 3\n\n # read GenericIO data in parallel\n data = pygio.read_genericio(\"m000p-499.haloproperties\")\n\n # distribute\n data = distribute(partition, box_size, data, [f\"fof_halo_center_{x}\" for x in \"xyz\"])\n\n # mark \"owned\" data with rank (allows differentiating owned and overloaded data)\n data[\"status\"] = partition.rank * np.ones(len(data[\"fof_halo_center_x\"]), dtype=np.uint16)\n\n # overload by 4Mpc/h\n data = overload(partition, box_size, data, 4., [f\"fof_halo_center_{x}\" for x in \"xyz\"])\n\n # now we can do analysis such as 2pt correlation functions (up to 4Mpc/h)\n # or neighbor finding, etc.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "MPI volume decomposition and particle distribution tools",
"version": "1.4.0",
"project_urls": {
"Documentation": "https://argonnecpac.github.io/MPIPartition",
"Homepage": "https://github.com/ArgonneCPAC/MPIPartition",
"Repository": "https://github.com/ArgonneCPAC/MPIPartition"
},
"split_keywords": [
"mpi",
" mpi4py",
" scientific computing",
" parallel computing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "33636251de534b0a10d386fdb4d04745518fc4b2f0fd12009bc7c1103534d2fc",
"md5": "21aedb3d2dd92e9fd7625e9eb72d9a06",
"sha256": "b3c0078d365950cffa347c15d419da6f9dcdbe34c9494b7b1e975aee5ab364b1"
},
"downloads": -1,
"filename": "mpipartition-1.4.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "21aedb3d2dd92e9fd7625e9eb72d9a06",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 23473,
"upload_time": "2024-11-15T22:48:11",
"upload_time_iso_8601": "2024-11-15T22:48:11.332225Z",
"url": "https://files.pythonhosted.org/packages/33/63/6251de534b0a10d386fdb4d04745518fc4b2f0fd12009bc7c1103534d2fc/mpipartition-1.4.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3db76e3dacaadc1e682c51e894a66146470f42db7cd2ce39c580f9f8b0dc9f5a",
"md5": "bda89496c29858f690db8e3f5a03998e",
"sha256": "c6e5be3be9fbebbad3aa1e6ae091017c9b11b6f5ede4b409ea0e8414287f390c"
},
"downloads": -1,
"filename": "mpipartition-1.4.0.tar.gz",
"has_sig": false,
"md5_digest": "bda89496c29858f690db8e3f5a03998e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 18353,
"upload_time": "2024-11-15T22:48:13",
"upload_time_iso_8601": "2024-11-15T22:48:13.008415Z",
"url": "https://files.pythonhosted.org/packages/3d/b7/6e3dacaadc1e682c51e894a66146470f42db7cd2ce39c580f9f8b0dc9f5a/mpipartition-1.4.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-15 22:48:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ArgonneCPAC",
"github_project": "MPIPartition",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "mpipartition"
}