mpl-ascii


Namempl-ascii JSON
Version 1.0.1 PyPI version JSON
download
home_pageNone
SummaryA matplotlib backend that produces plots using only ASCII characters
upload_time2025-09-20 05:58:19
maintainerChris Cave
docs_urlNone
authorChris Cave
requires_python>=3.7
licenseMIT License
keywords matplotlib plotting ascii
VCS
bugtrack_url
requirements matplotlib rich pytest setuptools setuptools_scm twine build
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mpl_ascii

A matplotlib backend that produces plots using only ASCII characters. It is available for python 3.9+.

## Quick start

Install `mpl_ascii` using pip

```bash
pip install mpl_ascii
```

To use mpl_ascii, add to your python program

```python
import matplotlib as mpl

mpl.use("module://mpl_ascii")
```

When you use `plt.show()` then it will print the plots as strings that consists of ASCII characters.

If you want to save a figure to a `.txt` file then just use `figure.savefig("my_figure.txt")`

See more information about using backends here: https://matplotlib.org/stable/users/explain/figure/backends.html

## Examples

### Bar chart


```python
import matplotlib.pyplot as plt
import matplotlib as mpl

mpl.use("module://mpl_ascii")

import matplotlib.pyplot as plt

# Example data
fruits = ['apple', 'blueberry', 'cherry', 'orange']
counts = [10, 15, 7, 5]
colors = ['red', 'blue', 'red', 'orange']  # Colors corresponding to each fruit

fig, ax = plt.subplots()

# Plot each bar individually
for fruit, count, color in zip(fruits, counts, colors):
    ax.bar(fruit, count, color=color, label=color)

# Display the legend
ax.legend(title='Fruit color')

plt.show()
```

![bar chart with color](assets/bar_chart.png)

### Scatter plot


```python
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl


mpl.use("module://mpl_ascii")

np.random.seed(0)
x = np.random.rand(40)
y = np.random.rand(40)
colors = np.random.choice(['red', 'green', 'blue', 'yellow'], size=40)
color_labels = ['Red', 'Green', 'Blue', 'Yellow']  # Labels corresponding to colors

# Create a scatter plot
fig, ax = plt.subplots()
for color, label in zip(['red', 'green', 'blue', 'yellow'], color_labels):
    # Plot each color as a separate scatter plot to enable legend tracking
    idx = np.where(colors == color)
    ax.scatter(x[idx], y[idx], color=color, label=label)

# Set title and labels
ax.set_title('Scatter Plot with 4 Different Colors')
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')

# Add a legend
ax.legend(title='Point Colors')
plt.show()
```

![Scatter plot with color](assets/scatter.png)

### Line plot

```python
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl
import mpl_ascii


mpl.use("module://mpl_ascii")


# Data for plotting
t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2 * np.pi * t)
c = 1 + np.cos(2 * np.pi * t)

fig, ax = plt.subplots()
ax.plot(t, s)
ax.plot(t, c)

ax.set(xlabel='time (s)', ylabel='voltage (mV)',
    title='About as simple as it gets, folks')

plt.show()
```
![Double plot with colors](assets/double_plot.png)

You can find more examples in the `tests/accepted` folder.

## Use cases

### Using Version Control for Plots

Handling plots with version control can pose challenges, especially when dealing with binary files. Here are some issues you might encounter:

- Binary Files: Committing binary files like PNGs can significantly increase your repository’s size. They are also difficult to compare (diff) and can lead to complex merge conflicts.

- SVG Files: Although SVGs are more version control-friendly than binary formats, they can still cause problems:
    - Large or complex graphics can result in excessively large SVG files.
    - Diffs can be hard to interpret.

To mitigate these issues, ASCII plots serve as an effective alternative:

- Size: ASCII representations are much smaller in size.
- Version Control Compatibility: They are straightforward to diff and simplify resolving merge conflicts.


This package acts as a backend for Matplotlib, enabling you to continue creating plots in your usual formats (PNG, SVG) during development. When you’re ready to commit your plots to a repository, simply switch to the `mpl_ascii` backend to convert them into ASCII format.

## Feedback

Please help make this package better by:
- reporting bugs.
- making feature requests. Matplotlib is an enormous library and this supports only a part of it. Let me know if there particular charts that you would like to be converted to ASCII
- letting me know what you use this for.

If you want to tell me about any of the above just use the Issues tab for now.

Thanks for reading and I hope you will like these plots as much as I do :-)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mpl-ascii",
    "maintainer": "Chris Cave",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "matplotlib, plotting, ASCII",
    "author": "Chris Cave",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/5f/02/5ad6ce56e3f7c545ed6a4096515d4a2bf6d88ad892ef41d7618941c2ce49/mpl_ascii-1.0.1.tar.gz",
    "platform": null,
    "description": "# mpl_ascii\n\nA matplotlib backend that produces plots using only ASCII characters. It is available for python 3.9+.\n\n## Quick start\n\nInstall `mpl_ascii` using pip\n\n```bash\npip install mpl_ascii\n```\n\nTo use mpl_ascii, add to your python program\n\n```python\nimport matplotlib as mpl\n\nmpl.use(\"module://mpl_ascii\")\n```\n\nWhen you use `plt.show()` then it will print the plots as strings that consists of ASCII characters.\n\nIf you want to save a figure to a `.txt` file then just use `figure.savefig(\"my_figure.txt\")`\n\nSee more information about using backends here: https://matplotlib.org/stable/users/explain/figure/backends.html\n\n## Examples\n\n### Bar chart\n\n\n```python\nimport matplotlib.pyplot as plt\nimport matplotlib as mpl\n\nmpl.use(\"module://mpl_ascii\")\n\nimport matplotlib.pyplot as plt\n\n# Example data\nfruits = ['apple', 'blueberry', 'cherry', 'orange']\ncounts = [10, 15, 7, 5]\ncolors = ['red', 'blue', 'red', 'orange']  # Colors corresponding to each fruit\n\nfig, ax = plt.subplots()\n\n# Plot each bar individually\nfor fruit, count, color in zip(fruits, counts, colors):\n    ax.bar(fruit, count, color=color, label=color)\n\n# Display the legend\nax.legend(title='Fruit color')\n\nplt.show()\n```\n\n![bar chart with color](assets/bar_chart.png)\n\n### Scatter plot\n\n\n```python\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport matplotlib as mpl\n\n\nmpl.use(\"module://mpl_ascii\")\n\nnp.random.seed(0)\nx = np.random.rand(40)\ny = np.random.rand(40)\ncolors = np.random.choice(['red', 'green', 'blue', 'yellow'], size=40)\ncolor_labels = ['Red', 'Green', 'Blue', 'Yellow']  # Labels corresponding to colors\n\n# Create a scatter plot\nfig, ax = plt.subplots()\nfor color, label in zip(['red', 'green', 'blue', 'yellow'], color_labels):\n    # Plot each color as a separate scatter plot to enable legend tracking\n    idx = np.where(colors == color)\n    ax.scatter(x[idx], y[idx], color=color, label=label)\n\n# Set title and labels\nax.set_title('Scatter Plot with 4 Different Colors')\nax.set_xlabel('X axis')\nax.set_ylabel('Y axis')\n\n# Add a legend\nax.legend(title='Point Colors')\nplt.show()\n```\n\n![Scatter plot with color](assets/scatter.png)\n\n### Line plot\n\n```python\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport matplotlib as mpl\nimport mpl_ascii\n\n\nmpl.use(\"module://mpl_ascii\")\n\n\n# Data for plotting\nt = np.arange(0.0, 2.0, 0.01)\ns = 1 + np.sin(2 * np.pi * t)\nc = 1 + np.cos(2 * np.pi * t)\n\nfig, ax = plt.subplots()\nax.plot(t, s)\nax.plot(t, c)\n\nax.set(xlabel='time (s)', ylabel='voltage (mV)',\n    title='About as simple as it gets, folks')\n\nplt.show()\n```\n![Double plot with colors](assets/double_plot.png)\n\nYou can find more examples in the `tests/accepted` folder.\n\n## Use cases\n\n### Using Version Control for Plots\n\nHandling plots with version control can pose challenges, especially when dealing with binary files. Here are some issues you might encounter:\n\n- Binary Files: Committing binary files like PNGs can significantly increase your repository\u2019s size. They are also difficult to compare (diff) and can lead to complex merge conflicts.\n\n- SVG Files: Although SVGs are more version control-friendly than binary formats, they can still cause problems:\n    - Large or complex graphics can result in excessively large SVG files.\n    - Diffs can be hard to interpret.\n\nTo mitigate these issues, ASCII plots serve as an effective alternative:\n\n- Size: ASCII representations are much smaller in size.\n- Version Control Compatibility: They are straightforward to diff and simplify resolving merge conflicts.\n\n\nThis package acts as a backend for Matplotlib, enabling you to continue creating plots in your usual formats (PNG, SVG) during development. When you\u2019re ready to commit your plots to a repository, simply switch to the `mpl_ascii` backend to convert them into ASCII format.\n\n## Feedback\n\nPlease help make this package better by:\n- reporting bugs.\n- making feature requests. Matplotlib is an enormous library and this supports only a part of it. Let me know if there particular charts that you would like to be converted to ASCII\n- letting me know what you use this for.\n\nIf you want to tell me about any of the above just use the Issues tab for now.\n\nThanks for reading and I hope you will like these plots as much as I do :-)\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "A matplotlib backend that produces plots using only ASCII characters",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/chriscave/mpl_ascii"
    },
    "split_keywords": [
        "matplotlib",
        " plotting",
        " ascii"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0a745a3396f1e594afed85324ec43fe069336e112db26461093647be074ce1c5",
                "md5": "7f0a8da6c445cb641792088d8ad7e22d",
                "sha256": "c15e902309c0b5192d1fabefe61017b258566a9929da39c27f7b476240006d9b"
            },
            "downloads": -1,
            "filename": "mpl_ascii-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7f0a8da6c445cb641792088d8ad7e22d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 35892,
            "upload_time": "2025-09-20T05:58:18",
            "upload_time_iso_8601": "2025-09-20T05:58:18.053655Z",
            "url": "https://files.pythonhosted.org/packages/0a/74/5a3396f1e594afed85324ec43fe069336e112db26461093647be074ce1c5/mpl_ascii-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5f025ad6ce56e3f7c545ed6a4096515d4a2bf6d88ad892ef41d7618941c2ce49",
                "md5": "14a47b315c47fff20c081cd5906619ad",
                "sha256": "7c33911d47a8bd970f7ad0133695bd2d003a09a36d1a32fe74535d87f294dad5"
            },
            "downloads": -1,
            "filename": "mpl_ascii-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "14a47b315c47fff20c081cd5906619ad",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 100584,
            "upload_time": "2025-09-20T05:58:19",
            "upload_time_iso_8601": "2025-09-20T05:58:19.409770Z",
            "url": "https://files.pythonhosted.org/packages/5f/02/5ad6ce56e3f7c545ed6a4096515d4a2bf6d88ad892ef41d7618941c2ce49/mpl_ascii-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-20 05:58:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chriscave",
    "github_project": "mpl_ascii",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5.3"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    ">=",
                    "13.7.1"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "7.4.4"
                ]
            ]
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    ">=",
                    "62"
                ]
            ]
        },
        {
            "name": "setuptools_scm",
            "specs": [
                [
                    ">=",
                    "7.1.0"
                ]
            ]
        },
        {
            "name": "twine",
            "specs": [
                [
                    ">=",
                    "4.0.2"
                ]
            ]
        },
        {
            "name": "build",
            "specs": [
                [
                    ">=",
                    "1.1.1"
                ]
            ]
        }
    ],
    "lcname": "mpl-ascii"
}
        
Elapsed time: 1.77962s