| Name | mri2mesh JSON |
| Version |
0.2.0
JSON |
| download |
| home_page | None |
| Summary | Tool for converting labeled MRI data to a mesh |
| upload_time | 2025-08-19 10:25:42 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | None |
| license | MIT |
| keywords |
mri
fem
brain
meshing
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# mri2mesh
This repository contains a pipeline to generate surfaces from voxelized data using `scikit-image` and `pyvista`. It also contains tools for visualization using `pyvista`.
## Installation
To install the required packages, run:
```bash
python3 -m pip install git+https://github.com/scientificcomputing/mri2mesh.git
```
## Usage
The basic using is through the command line using the command `mri2mesh`. To see all the options, run:
```bash
mri2mesh --help
```
### Visualization
Visualization is achieved through the subcommand `viz`. To see all options you can do
```bash
mri2mesh viz --help
```
For example to visualize a nifty file called `T1_synthseg.nii.gz`, run:
```bash
mri2mesh viz volume-clip -i T1_synthseg.nii.gz
```
which will open up the volume with a clipping plane. To see all the options, run:
```bash
mri2mesh viz volume-clip --help
```
### Surface generation
To generate the parenchyma surface from a nifty file, run:
```bash
mri2mesh surface parenchyma -i T1_synthseg.nii.gz
```
## Authors
The pipeline is developed by Marius Causemann and Henrik Finsberg.
## License
MIT
Raw data
{
"_id": null,
"home_page": null,
"name": "mri2mesh",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "mri, fem, brain, meshing",
"author": null,
"author_email": "Henrik Finsberg <henriknf@simula.no>, Marius Causemann <mariusca@simula.no>",
"download_url": "https://files.pythonhosted.org/packages/e1/6a/c58266191120861fb91b58eb21fef55c37675ae5721b768e9ffa8ccae319/mri2mesh-0.2.0.tar.gz",
"platform": null,
"description": "# mri2mesh\n\nThis repository contains a pipeline to generate surfaces from voxelized data using `scikit-image` and `pyvista`. It also contains tools for visualization using `pyvista`.\n\n## Installation\n\nTo install the required packages, run:\n\n```bash\npython3 -m pip install git+https://github.com/scientificcomputing/mri2mesh.git\n```\n\n## Usage\nThe basic using is through the command line using the command `mri2mesh`. To see all the options, run:\n\n```bash\nmri2mesh --help\n```\n\n### Visualization\nVisualization is achieved through the subcommand `viz`. To see all options you can do\n\n```bash\nmri2mesh viz --help\n```\n\nFor example to visualize a nifty file called `T1_synthseg.nii.gz`, run:\n\n```bash\nmri2mesh viz volume-clip -i T1_synthseg.nii.gz\n```\nwhich will open up the volume with a clipping plane. To see all the options, run:\n\n```bash\nmri2mesh viz volume-clip --help\n```\n\n### Surface generation\nTo generate the parenchyma surface from a nifty file, run:\n\n```bash\nmri2mesh surface parenchyma -i T1_synthseg.nii.gz\n```\n\n## Authors\nThe pipeline is developed by Marius Causemann and Henrik Finsberg.\n\n\n## License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Tool for converting labeled MRI data to a mesh",
"version": "0.2.0",
"project_urls": {
"Homepage": "https://github.com/scientificcomputing/mri2mesh"
},
"split_keywords": [
"mri",
" fem",
" brain",
" meshing"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "fa0975bdf0a4ec5f2a8f0aaa9a322feaeab5ec81b633fd29e70013b2524170e7",
"md5": "ed5a753313b83272b41345399687346c",
"sha256": "14bec7600aa4570ef53f0a69175e6aea1534a513024c2c280a54d62abc3fdc72"
},
"downloads": -1,
"filename": "mri2mesh-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ed5a753313b83272b41345399687346c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 21359,
"upload_time": "2025-08-19T10:25:41",
"upload_time_iso_8601": "2025-08-19T10:25:41.908315Z",
"url": "https://files.pythonhosted.org/packages/fa/09/75bdf0a4ec5f2a8f0aaa9a322feaeab5ec81b633fd29e70013b2524170e7/mri2mesh-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e16ac58266191120861fb91b58eb21fef55c37675ae5721b768e9ffa8ccae319",
"md5": "2f0096df326b914717d1b0dff4b1e026",
"sha256": "3b1bb829c6ecc61369340196452478fec141bfe050fb4e5393c6e222a8605b87"
},
"downloads": -1,
"filename": "mri2mesh-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "2f0096df326b914717d1b0dff4b1e026",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 17433,
"upload_time": "2025-08-19T10:25:42",
"upload_time_iso_8601": "2025-08-19T10:25:42.984453Z",
"url": "https://files.pythonhosted.org/packages/e1/6a/c58266191120861fb91b58eb21fef55c37675ae5721b768e9ffa8ccae319/mri2mesh-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-19 10:25:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "scientificcomputing",
"github_project": "mri2mesh",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mri2mesh"
}