mri2mesh


Namemri2mesh JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryTool for converting labeled MRI data to a mesh
upload_time2025-08-19 10:25:42
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseMIT
keywords mri fem brain meshing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # mri2mesh

This repository contains a pipeline to generate surfaces from voxelized data using `scikit-image` and `pyvista`. It also contains tools for visualization using `pyvista`.

## Installation

To install the required packages, run:

```bash
python3 -m pip install git+https://github.com/scientificcomputing/mri2mesh.git
```

## Usage
The basic using is through the command line using the command `mri2mesh`. To see all the options, run:

```bash
mri2mesh --help
```

### Visualization
Visualization is achieved through the subcommand `viz`. To see all options you can do

```bash
mri2mesh viz --help
```

For example to visualize a nifty file called `T1_synthseg.nii.gz`, run:

```bash
mri2mesh viz volume-clip -i T1_synthseg.nii.gz
```
which will open up the volume with a clipping plane. To see all the options, run:

```bash
mri2mesh viz volume-clip --help
```

### Surface generation
To generate the parenchyma surface from a nifty file, run:

```bash
mri2mesh surface parenchyma -i T1_synthseg.nii.gz
```

## Authors
The pipeline is developed by Marius Causemann and Henrik Finsberg.


## License
MIT

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mri2mesh",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "mri, fem, brain, meshing",
    "author": null,
    "author_email": "Henrik Finsberg <henriknf@simula.no>, Marius Causemann <mariusca@simula.no>",
    "download_url": "https://files.pythonhosted.org/packages/e1/6a/c58266191120861fb91b58eb21fef55c37675ae5721b768e9ffa8ccae319/mri2mesh-0.2.0.tar.gz",
    "platform": null,
    "description": "# mri2mesh\n\nThis repository contains a pipeline to generate surfaces from voxelized data using `scikit-image` and `pyvista`. It also contains tools for visualization using `pyvista`.\n\n## Installation\n\nTo install the required packages, run:\n\n```bash\npython3 -m pip install git+https://github.com/scientificcomputing/mri2mesh.git\n```\n\n## Usage\nThe basic using is through the command line using the command `mri2mesh`. To see all the options, run:\n\n```bash\nmri2mesh --help\n```\n\n### Visualization\nVisualization is achieved through the subcommand `viz`. To see all options you can do\n\n```bash\nmri2mesh viz --help\n```\n\nFor example to visualize a nifty file called `T1_synthseg.nii.gz`, run:\n\n```bash\nmri2mesh viz volume-clip -i T1_synthseg.nii.gz\n```\nwhich will open up the volume with a clipping plane. To see all the options, run:\n\n```bash\nmri2mesh viz volume-clip --help\n```\n\n### Surface generation\nTo generate the parenchyma surface from a nifty file, run:\n\n```bash\nmri2mesh surface parenchyma -i T1_synthseg.nii.gz\n```\n\n## Authors\nThe pipeline is developed by Marius Causemann and Henrik Finsberg.\n\n\n## License\nMIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Tool for converting labeled MRI data to a mesh",
    "version": "0.2.0",
    "project_urls": {
        "Homepage": "https://github.com/scientificcomputing/mri2mesh"
    },
    "split_keywords": [
        "mri",
        " fem",
        " brain",
        " meshing"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fa0975bdf0a4ec5f2a8f0aaa9a322feaeab5ec81b633fd29e70013b2524170e7",
                "md5": "ed5a753313b83272b41345399687346c",
                "sha256": "14bec7600aa4570ef53f0a69175e6aea1534a513024c2c280a54d62abc3fdc72"
            },
            "downloads": -1,
            "filename": "mri2mesh-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed5a753313b83272b41345399687346c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21359,
            "upload_time": "2025-08-19T10:25:41",
            "upload_time_iso_8601": "2025-08-19T10:25:41.908315Z",
            "url": "https://files.pythonhosted.org/packages/fa/09/75bdf0a4ec5f2a8f0aaa9a322feaeab5ec81b633fd29e70013b2524170e7/mri2mesh-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e16ac58266191120861fb91b58eb21fef55c37675ae5721b768e9ffa8ccae319",
                "md5": "2f0096df326b914717d1b0dff4b1e026",
                "sha256": "3b1bb829c6ecc61369340196452478fec141bfe050fb4e5393c6e222a8605b87"
            },
            "downloads": -1,
            "filename": "mri2mesh-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2f0096df326b914717d1b0dff4b1e026",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17433,
            "upload_time": "2025-08-19T10:25:42",
            "upload_time_iso_8601": "2025-08-19T10:25:42.984453Z",
            "url": "https://files.pythonhosted.org/packages/e1/6a/c58266191120861fb91b58eb21fef55c37675ae5721b768e9ffa8ccae319/mri2mesh-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-19 10:25:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scientificcomputing",
    "github_project": "mri2mesh",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "mri2mesh"
}
        
Elapsed time: 3.66152s