Name | mrtwin JSON |
Version |
0.1.3
JSON |
| download |
home_page | None |
Summary | Collection of virtual objects for numerical MR experiments. |
upload_time | 2024-09-12 09:08:01 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | None |
keywords |
brainweb
mri
download
data
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
MRTwin
======
MRTwin is a collection of virtual objects for numerical MR experiments.
|Coverage| |CI| |CD| |License| |Codefactor| |Sphinx| |PyPi| |Black| |PythonVersion|
.. |Coverage| image:: https://infn-mri.github.io/mrtwin/_static/coverage_badge.svg
:target: https://infn-mri.github.io/mrtwin
.. |CI| image:: https://github.com/INFN-MRI/mrtwin/workflows/CI/badge.svg
:target: https://github.com/INFN-MRI/mrtwin
.. |CD| image:: https://github.com/INFN-MRI/mrtwin/workflows/CD/badge.svg
:target: https://github.com/INFN-MRI/mrtwin
.. |License| image:: https://img.shields.io/github/license/INFN-MRI/mrtwin
:target: https://github.com/INFN-MRI/mrtwin/blob/main/LICENSE.txt
.. |Codefactor| image:: https://www.codefactor.io/repository/github/INFN-MRI/mrtwin/badge
:target: https://www.codefactor.io/repository/github/INFN-MRI/mrtwin
.. |Sphinx| image:: https://img.shields.io/badge/docs-Sphinx-blue
:target: https://infn-mri.github.io/mrtwin
.. |PyPi| image:: https://img.shields.io/pypi/v/mrtwin
:target: https://pypi.org/project/mrtwin
.. |Black| image:: https://img.shields.io/badge/style-black-black
.. |PythonVersion| image:: https://img.shields.io/badge/Python-%3E=3.10-blue?logo=python&logoColor=white
:target: https://python.org
Features
--------
- **Virtual Phantoms:** A collection of sparse (fuzzy and crisp) and dense phantoms for quantitative MRI based on different anatomical models (Shepp-Logan, Brainweb database, Open Science CBS Neuroimaging Repository database) and different tissue representations (single pool, two- and three-pools).
- **Field Maps:** Routines for generation of realistic field maps, including B0 (based on input phantom susceptibility), B1 (including multiple RF modes) and coil sensitivities.
- **Motion patterns:** Markov chain generated rigid motion patterns (both for 2D and 3D imaging) to simulate the effect of motion on MR image quality.
- **Gradient System Response:** Generate Gaussian-shaped gradient response function with linear phase components to simulate k-space trajectory shift and deformation due to non-ideal gradient systems.
Installation
------------
MRTwin can be installed via pip as:
.. code-block:: bash
pip install mrtwin
Basic Usage
-----------
Using MRTwin, we can quickly create a Shepp-Logan phantom,
the corresponding static field inhomogeneity map and a set
of coil sensitivity maps as follows
.. code-block:: python
import mrtwin
# 2D Shepp-Logan phantom
phantom = mrtwin.shepplogan_phantom(ndim=2, shape=256).as_numeric()
# B0 map
b0_map = mrtwin.b0field(phantom.Chi)
# Coil sensitivity maps
smaps = mrtwin.sensmap(shape=(8, 256, 256))
This allow us to quickly simulate, e.g., a fully-sampled multi-coil Cartesian GRE experiment
as:
.. code-block:: python
import numpy as np
TE = 10.0 # ms
rate_map = 1e3 / phantom.T2s + 1j * 2 * np.pi * b0_map
gre = smaps * phantom.M0 * np.exp(-rate_map * TE * 1e-3)
This can be coupled with other libraries (e.g., `MRI-NUFFT <https://github.com/mind-inria/mri-nufft>`_)
to simulate more complex MR sequences (e.g., Non-Cartesian and sub-Nyquist imaging).
Development
~~~~~~~~~~~
If you are interested in improving this project, install MRTwin in editable mode:
.. code-block:: bash
git clone git@github.com:INFN-MRI/mrtwin
cd mrtwin
pip install -e .[dev,test,doc]
Related projects
----------------
This package is inspired by the following excellent projects:
- Brainweb-dl <http://github.com/paquiteau/brainweb-dl>
- Phantominator <https://github.com/mckib2/phantominator>
- SigPy <https://github.com/mikgroup/sigpy>
Raw data
{
"_id": null,
"home_page": null,
"name": "mrtwin",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "brainweb, mri, download, data",
"author": null,
"author_email": "Matteo Cencini <matteo.cencini@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/90/da/6708a1c3aa2a8d72e37c88de33a6583f74333b1ad585945d3aa046e2b2bd/mrtwin-0.1.3.tar.gz",
"platform": null,
"description": "MRTwin\n======\n\nMRTwin is a collection of virtual objects for numerical MR experiments.\n\n|Coverage| |CI| |CD| |License| |Codefactor| |Sphinx| |PyPi| |Black| |PythonVersion|\n\n.. |Coverage| image:: https://infn-mri.github.io/mrtwin/_static/coverage_badge.svg\n :target: https://infn-mri.github.io/mrtwin\n\n.. |CI| image:: https://github.com/INFN-MRI/mrtwin/workflows/CI/badge.svg\n :target: https://github.com/INFN-MRI/mrtwin\n\n.. |CD| image:: https://github.com/INFN-MRI/mrtwin/workflows/CD/badge.svg\n :target: https://github.com/INFN-MRI/mrtwin\n\n.. |License| image:: https://img.shields.io/github/license/INFN-MRI/mrtwin\n :target: https://github.com/INFN-MRI/mrtwin/blob/main/LICENSE.txt\n\n.. |Codefactor| image:: https://www.codefactor.io/repository/github/INFN-MRI/mrtwin/badge\n :target: https://www.codefactor.io/repository/github/INFN-MRI/mrtwin\n\n.. |Sphinx| image:: https://img.shields.io/badge/docs-Sphinx-blue\n :target: https://infn-mri.github.io/mrtwin\n\n.. |PyPi| image:: https://img.shields.io/pypi/v/mrtwin\n :target: https://pypi.org/project/mrtwin\n\n.. |Black| image:: https://img.shields.io/badge/style-black-black\n\n.. |PythonVersion| image:: https://img.shields.io/badge/Python-%3E=3.10-blue?logo=python&logoColor=white\n :target: https://python.org\n\nFeatures\n--------\n\n- **Virtual Phantoms:** A collection of sparse (fuzzy and crisp) and dense phantoms for quantitative MRI based on different anatomical models (Shepp-Logan, Brainweb database, Open Science CBS Neuroimaging Repository database) and different tissue representations (single pool, two- and three-pools).\n- **Field Maps:** Routines for generation of realistic field maps, including B0 (based on input phantom susceptibility), B1 (including multiple RF modes) and coil sensitivities.\n- **Motion patterns:** Markov chain generated rigid motion patterns (both for 2D and 3D imaging) to simulate the effect of motion on MR image quality.\n- **Gradient System Response:** Generate Gaussian-shaped gradient response function with linear phase components to simulate k-space trajectory shift and deformation due to non-ideal gradient systems.\n\nInstallation\n------------\n\nMRTwin can be installed via pip as:\n\n.. code-block:: bash\n\n pip install mrtwin\n\nBasic Usage\n-----------\n\nUsing MRTwin, we can quickly create a Shepp-Logan phantom,\nthe corresponding static field inhomogeneity map and a set \nof coil sensitivity maps as follows\n\n.. code-block:: python\n\n import mrtwin\n\n # 2D Shepp-Logan phantom\n phantom = mrtwin.shepplogan_phantom(ndim=2, shape=256).as_numeric()\n\n # B0 map\n b0_map = mrtwin.b0field(phantom.Chi)\n\n # Coil sensitivity maps\n smaps = mrtwin.sensmap(shape=(8, 256, 256))\n\nThis allow us to quickly simulate, e.g., a fully-sampled multi-coil Cartesian GRE experiment\nas:\n\n.. code-block:: python\n\n import numpy as np \n\n TE = 10.0 # ms\n rate_map = 1e3 / phantom.T2s + 1j * 2 * np.pi * b0_map\n gre = smaps * phantom.M0 * np.exp(-rate_map * TE * 1e-3)\n\nThis can be coupled with other libraries (e.g., `MRI-NUFFT <https://github.com/mind-inria/mri-nufft>`_)\nto simulate more complex MR sequences (e.g., Non-Cartesian and sub-Nyquist imaging).\n\n\n\nDevelopment\n~~~~~~~~~~~\n\nIf you are interested in improving this project, install MRTwin in editable mode:\n\n.. code-block:: bash\n\n git clone git@github.com:INFN-MRI/mrtwin\n cd mrtwin\n pip install -e .[dev,test,doc]\n\n\nRelated projects\n----------------\n\nThis package is inspired by the following excellent projects:\n\n- Brainweb-dl <http://github.com/paquiteau/brainweb-dl>\n- Phantominator <https://github.com/mckib2/phantominator>\n- SigPy <https://github.com/mikgroup/sigpy>\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Collection of virtual objects for numerical MR experiments.",
"version": "0.1.3",
"project_urls": {
"Bug Reports": "https://github.com/INFN-MRI/mrtwin/issues",
"Homepage": "https://github.com/INFN-MRI/mrtwin",
"Source": "https://github.com/INFN-MRI/mrtwin"
},
"split_keywords": [
"brainweb",
" mri",
" download",
" data"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "922503e0328c5190c60decf19a0818afcf8bee1be49c67c4b0c6867e1137861c",
"md5": "5a2436e10ec4a27abb2a8d887f1e441b",
"sha256": "55a0e786621562e54826de76e40c1d12f9926a0f82a0f0af28092b5db72ff120"
},
"downloads": -1,
"filename": "mrtwin-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5a2436e10ec4a27abb2a8d887f1e441b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 49798,
"upload_time": "2024-09-12T09:07:59",
"upload_time_iso_8601": "2024-09-12T09:07:59.541142Z",
"url": "https://files.pythonhosted.org/packages/92/25/03e0328c5190c60decf19a0818afcf8bee1be49c67c4b0c6867e1137861c/mrtwin-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "90da6708a1c3aa2a8d72e37c88de33a6583f74333b1ad585945d3aa046e2b2bd",
"md5": "6bd898405ab499b5715014666d1db715",
"sha256": "b1ced4c16589dd350cc959ef619ddb3ffba1b28ad56f743cdf4be1b998bcfaae"
},
"downloads": -1,
"filename": "mrtwin-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "6bd898405ab499b5715014666d1db715",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 60815,
"upload_time": "2024-09-12T09:08:01",
"upload_time_iso_8601": "2024-09-12T09:08:01.667605Z",
"url": "https://files.pythonhosted.org/packages/90/da/6708a1c3aa2a8d72e37c88de33a6583f74333b1ad585945d3aa046e2b2bd/mrtwin-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-12 09:08:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "INFN-MRI",
"github_project": "mrtwin",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mrtwin"
}