Name | mudata JSON |
Version |
0.3.1
JSON |
| download |
home_page | None |
Summary | Multimodal data |
upload_time | 2024-08-29 16:26:36 |
maintainer | None |
docs_url | None |
author | Danila Bredikhin |
requires_python | >=3.10 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
![mudata header](./docs/img/mudata.svg)
[![Documentation Status](https://readthedocs.org/projects/mudata/badge/?version=latest)](http://mudata.readthedocs.io/)
[![PyPi version](https://img.shields.io/pypi/v/mudata)](https://pypi.org/project/mudata)
[![](https://img.shields.io/badge/scverse-core-black.svg?labelColor=white&logo=)](https://scverse.org)
[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)
# MuData – multimodal data
[Documentation](https://mudata.readthedocs.io/) | [Publication](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02577-8)
For using `MuData` in multimodal omics applications see [`muon`](https://github.com/scverse/muon).
## Data structure
In the same vein as [AnnData](https://github.com/theislab/anndata) is designed to represent unimodal annotated datasets in Python, `MuData` is designed to provide functionality to load, process, and store multimodal omics data.
```
MuData
.obs -- annotation of observations (cells, samples)
.var -- annotation of features (genes, genomic loci, etc.)
.obsm -- multidimensional cell annotation,
incl. a boolean for each modality
that links .obs to the cells of that modality
.varm -- multidimensional feature annotation,
incl. a boolean vector for each modality
that links .var to the features of that modality
.mod
AnnData
.X -- data matrix (cells x features)
.obs -- cell metadata (assay-specific)
.var -- annotation of features (genes, peaks, genomic sites)
.obsm
.varm
.uns
.uns
```
## Overview
### Input
`MuData` can be thought of as a multimodal container, in which every modality is an AnnData object:
```py
from mudata import MuData
mdata = MuData({'rna': adata_rna, 'atac': adata_atac})
```
If multimodal data from 10X Genomics is to be read, convenient readers are provided by [`muon`](https://github.com/scverse/muon) that return a `MuData` object with AnnData objects inside, each corresponding to its own modality:
```py
import muon as mu
mu.read_10x_h5("filtered_feature_bc_matrix.h5")
# MuData object with n_obs × n_vars = 10000 × 80000
# 2 modalities
# rna: 10000 x 30000
# var: 'gene_ids', 'feature_types', 'genome', 'interval'
# atac: 10000 x 50000
# var: 'gene_ids', 'feature_types', 'genome', 'interval'
# uns: 'atac', 'files'
```
### I/O with `.h5mu` files
`MuData` objects represent modalities as collections of AnnData objects. These collections can be saved to disk and retrieved using HDF5-based `.h5mu` files, which design is based on `.h5ad` file structure.
```py
import mudata as md
mdata_pbmc.write("pbmc_10k.h5mu")
mdata = md.read("pbmc_10k.h5mu")
```
It allows to effectively use the hierarchical nature of HDF5 files and to read/write AnnData object directly from/to `.h5mu` files:
```py
adata = md.read("pbmc_10k.h5mu/rna")
md.write("pbmc_10k.h5mu/rna", adata)
```
## Citation
If you use `mudata` in your work, please cite the publication as follows:
> **MUON: multimodal omics analysis framework**
>
> Danila Bredikhin, Ilia Kats, Oliver Stegle
>
> _Genome Biology_ 2022 Feb 01. doi: [10.1186/s13059-021-02577-8](https://doi.org/10.1186/s13059-021-02577-8).
You can cite the scverse publication as follows:
> **The scverse project provides a computational ecosystem for single-cell omics data analysis**
>
> Isaac Virshup, Danila Bredikhin, Lukas Heumos, Giovanni Palla, Gregor Sturm, Adam Gayoso, Ilia Kats, Mikaela Koutrouli, Scverse Community, Bonnie Berger, Dana Pe’er, Aviv Regev, Sarah A. Teichmann, Francesca Finotello, F. Alexander Wolf, Nir Yosef, Oliver Stegle & Fabian J. Theis
>
> _Nat Biotechnol._ 2023 Apr 10. doi: [10.1038/s41587-023-01733-8](https://doi.org/10.1038/s41587-023-01733-8).
[//]: # "numfocus-fiscal-sponsor-attribution"
`mudata` is part of the scverse project ([website](https://scverse.org), [governance](https://scverse.org/about/roles)) and is fiscally sponsored by [NumFOCUS](https://numfocus.org/).
Please consider making a tax-deductible [donation](https://numfocus.org/donate-to-scverse) to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.
<a href="https://numfocus.org/project/scverse">
<img
src="https://raw.githubusercontent.com/numfocus/templates/master/images/numfocus-logo.png"
width="200"
>
</a>
Raw data
{
"_id": null,
"home_page": null,
"name": "mudata",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "Danila Bredikhin <danila@stanford.edu>",
"keywords": null,
"author": "Danila Bredikhin",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/5a/b0/4e1f41b749d88758a490a5289d8aabbbad8edc48b6fcc090e945619e4577/mudata-0.3.1.tar.gz",
"platform": null,
"description": "![mudata header](./docs/img/mudata.svg)\n\n[![Documentation Status](https://readthedocs.org/projects/mudata/badge/?version=latest)](http://mudata.readthedocs.io/)\n[![PyPi version](https://img.shields.io/pypi/v/mudata)](https://pypi.org/project/mudata)\n[![](https://img.shields.io/badge/scverse-core-black.svg?labelColor=white&logo=)](https://scverse.org)\n[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org)\n\n# MuData \u2013 multimodal data\n\n[Documentation](https://mudata.readthedocs.io/) | [Publication](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02577-8)\n\nFor using `MuData` in multimodal omics applications see [`muon`](https://github.com/scverse/muon).\n\n## Data structure\n\nIn the same vein as [AnnData](https://github.com/theislab/anndata) is designed to represent unimodal annotated datasets in Python, `MuData` is designed to provide functionality to load, process, and store multimodal omics data.\n\n\n```\nMuData\n .obs -- annotation of observations (cells, samples)\n .var -- annotation of features (genes, genomic loci, etc.)\n .obsm -- multidimensional cell annotation, \n incl. a boolean for each modality\n that links .obs to the cells of that modality\n .varm -- multidimensional feature annotation, \n incl. a boolean vector for each modality\n that links .var to the features of that modality\n .mod\n AnnData\n .X -- data matrix (cells x features)\n .obs -- cell metadata (assay-specific)\n .var -- annotation of features (genes, peaks, genomic sites)\n .obsm\n .varm\n .uns\n .uns\n```\n\n## Overview\n\n### Input\n\n`MuData` can be thought of as a multimodal container, in which every modality is an AnnData object:\n\n```py\nfrom mudata import MuData\n\nmdata = MuData({'rna': adata_rna, 'atac': adata_atac})\n```\n\nIf multimodal data from 10X Genomics is to be read, convenient readers are provided by [`muon`](https://github.com/scverse/muon) that return a `MuData` object with AnnData objects inside, each corresponding to its own modality:\n\n```py\nimport muon as mu\n\nmu.read_10x_h5(\"filtered_feature_bc_matrix.h5\")\n# MuData object with n_obs \u00d7 n_vars = 10000 \u00d7 80000 \n# 2 modalities\n# rna:\t10000 x 30000\n# var:\t'gene_ids', 'feature_types', 'genome', 'interval'\n# atac:\t10000 x 50000\n# var:\t'gene_ids', 'feature_types', 'genome', 'interval'\n# uns:\t'atac', 'files'\n```\n\n### I/O with `.h5mu` files\n\n`MuData` objects represent modalities as collections of AnnData objects. These collections can be saved to disk and retrieved using HDF5-based `.h5mu` files, which design is based on `.h5ad` file structure.\n\n```py\nimport mudata as md\n\nmdata_pbmc.write(\"pbmc_10k.h5mu\")\nmdata = md.read(\"pbmc_10k.h5mu\")\n```\n\nIt allows to effectively use the hierarchical nature of HDF5 files and to read/write AnnData object directly from/to `.h5mu` files:\n\n```py\nadata = md.read(\"pbmc_10k.h5mu/rna\")\nmd.write(\"pbmc_10k.h5mu/rna\", adata)\n```\n\n## Citation\n\nIf you use `mudata` in your work, please cite the publication as follows:\n\n> **MUON: multimodal omics analysis framework**\n> \n> Danila Bredikhin, Ilia Kats, Oliver Stegle\n>\n> _Genome Biology_ 2022 Feb 01. doi: [10.1186/s13059-021-02577-8](https://doi.org/10.1186/s13059-021-02577-8).\n\nYou can cite the scverse publication as follows:\n\n> **The scverse project provides a computational ecosystem for single-cell omics data analysis**\n>\n> Isaac Virshup, Danila Bredikhin, Lukas Heumos, Giovanni Palla, Gregor Sturm, Adam Gayoso, Ilia Kats, Mikaela Koutrouli, Scverse Community, Bonnie Berger, Dana Pe\u2019er, Aviv Regev, Sarah A. Teichmann, Francesca Finotello, F. Alexander Wolf, Nir Yosef, Oliver Stegle & Fabian J. Theis\n>\n> _Nat Biotechnol._ 2023 Apr 10. doi: [10.1038/s41587-023-01733-8](https://doi.org/10.1038/s41587-023-01733-8).\n\n[//]: # \"numfocus-fiscal-sponsor-attribution\"\n\n`mudata` is part of the scverse project ([website](https://scverse.org), [governance](https://scverse.org/about/roles)) and is fiscally sponsored by [NumFOCUS](https://numfocus.org/).\nPlease consider making a tax-deductible [donation](https://numfocus.org/donate-to-scverse) to help the project pay for developer time, professional services, travel, workshops, and a variety of other needs.\n\n<a href=\"https://numfocus.org/project/scverse\">\n <img\n src=\"https://raw.githubusercontent.com/numfocus/templates/master/images/numfocus-logo.png\"\n width=\"200\"\n >\n</a>\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Multimodal data",
"version": "0.3.1",
"project_urls": {
"Documentation": "https://muon.readthedocs.io/en/latest/",
"Home-page": "https://muon.scverse.org/",
"Source": "https://github.com/scverse/mudata"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "96107b9588eee1883c269453b44d643ae68e37c93eb78f7b6bdd2838688e957c",
"md5": "de70fd6296e8c7cd320716657712ee0e",
"sha256": "d3a5ce96c3fcb64077be936758cc71657475905a4bbeeeba17c9ff48173f6c9d"
},
"downloads": -1,
"filename": "mudata-0.3.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "de70fd6296e8c7cd320716657712ee0e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 41004,
"upload_time": "2024-08-29T16:26:35",
"upload_time_iso_8601": "2024-08-29T16:26:35.156623Z",
"url": "https://files.pythonhosted.org/packages/96/10/7b9588eee1883c269453b44d643ae68e37c93eb78f7b6bdd2838688e957c/mudata-0.3.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5ab04e1f41b749d88758a490a5289d8aabbbad8edc48b6fcc090e945619e4577",
"md5": "b3ca669322cc74c3652d8dec2e82f5fb",
"sha256": "452f166861539c118e99c432725fc6ced6064d96d333413a306cb5b04992b963"
},
"downloads": -1,
"filename": "mudata-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "b3ca669322cc74c3652d8dec2e82f5fb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 47051,
"upload_time": "2024-08-29T16:26:36",
"upload_time_iso_8601": "2024-08-29T16:26:36.649160Z",
"url": "https://files.pythonhosted.org/packages/5a/b0/4e1f41b749d88758a490a5289d8aabbbad8edc48b6fcc090e945619e4577/mudata-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-29 16:26:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "scverse",
"github_project": "mudata",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "mudata"
}