MUFS


NameMUFS JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/Doctorado-ML/mufs#mufs
SummaryMulti Feature Selection
upload_time2022-05-19 16:21:45
maintainer
docs_urlNone
authorRicardo Montañana Gómez
requires_python
licenseMIT License
keywords feature-selection
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            ![CI](https://github.com/Doctorado-ML/mufs/workflows/CI/badge.svg)
[![Codacy Badge](https://app.codacy.com/project/badge/Grade/66ad727eb13e4c7a8816db1e44d994a7)](https://www.codacy.com/gh/Doctorado-ML/mufs/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/mufs&utm_campaign=Badge_Grade)
[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/mufs.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/mufs/context:python)
[![PyPI version](https://badge.fury.io/py/MUFS.svg)](https://badge.fury.io/py/MUFS)
[![Technical Debt](https://haystack.rmontanana.es:25000/api/project_badges/measure?project=mufs&metric=sqale_index&token=1119a3bfd4025d50ef3009a44c600c16670ee31a)](https://haystack.rmontanana.es:25000/dashboard?id=mufs)
[![Quality Gate Status](https://haystack.rmontanana.es:25000/api/project_badges/measure?project=mufs&metric=alert_status&token=1119a3bfd4025d50ef3009a44c600c16670ee31a)](https://haystack.rmontanana.es:25000/dashboard?id=mufs)
![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)

# MUFS

## Multi Feature Selection

### Fast Correlation-Based Filter

Feature Selection for High-Dimensional Data : A Fast Correlation-Based Filter Solution. / Yu, Lei; Liu, Huan.

Proceedings, Twentieth International Conference on Machine Learning. ed. / T. Fawcett; N. Mishra. 2003. p. 856-863 (Proceedings, Twentieth International Conference on Machine Learning; Vol. 2).

### Correlation-based Feature Selection

Hall, M. A. (1999), 'Correlation-based Feature Selection for Machine Learning'.

### IWSS

Based on: P. Bermejo, J. A. Gamez and J. M. Puerta, "Incremental Wrapper-based subset Selection with replacement: An advantageous alternative to sequential forward selection," 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 367-374, doi: 10.1109/CIDM.2009.4938673.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Doctorado-ML/mufs#mufs",
    "name": "MUFS",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "feature-selection",
    "author": "Ricardo Monta\u00f1ana G\u00f3mez",
    "author_email": "Ricardo.Montanana@alu.uclm.es",
    "download_url": "https://files.pythonhosted.org/packages/c1/2d/9b4e4725e6ed554940bdc233b99e7ff3d0ce2eb05f42e3ca470b801d3bbc/MUFS-0.1.3.tar.gz",
    "platform": null,
    "description": "![CI](https://github.com/Doctorado-ML/mufs/workflows/CI/badge.svg)\n[![Codacy Badge](https://app.codacy.com/project/badge/Grade/66ad727eb13e4c7a8816db1e44d994a7)](https://www.codacy.com/gh/Doctorado-ML/mufs/dashboard?utm_source=github.com&utm_medium=referral&utm_content=Doctorado-ML/mufs&utm_campaign=Badge_Grade)\n[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/Doctorado-ML/mufs.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/Doctorado-ML/mufs/context:python)\n[![PyPI version](https://badge.fury.io/py/MUFS.svg)](https://badge.fury.io/py/MUFS)\n[![Technical Debt](https://haystack.rmontanana.es:25000/api/project_badges/measure?project=mufs&metric=sqale_index&token=1119a3bfd4025d50ef3009a44c600c16670ee31a)](https://haystack.rmontanana.es:25000/dashboard?id=mufs)\n[![Quality Gate Status](https://haystack.rmontanana.es:25000/api/project_badges/measure?project=mufs&metric=alert_status&token=1119a3bfd4025d50ef3009a44c600c16670ee31a)](https://haystack.rmontanana.es:25000/dashboard?id=mufs)\n![https://img.shields.io/badge/python-3.8%2B-blue](https://img.shields.io/badge/python-3.8%2B-brightgreen)\n\n# MUFS\n\n## Multi Feature Selection\n\n### Fast Correlation-Based Filter\n\nFeature Selection for High-Dimensional Data : A Fast Correlation-Based Filter Solution. / Yu, Lei; Liu, Huan.\n\nProceedings, Twentieth International Conference on Machine Learning. ed. / T. Fawcett; N. Mishra. 2003. p. 856-863 (Proceedings, Twentieth International Conference on Machine Learning; Vol. 2).\n\n### Correlation-based Feature Selection\n\nHall, M. A. (1999), 'Correlation-based Feature Selection for Machine Learning'.\n\n### IWSS\n\nBased on: P. Bermejo, J. A. Gamez and J. M. Puerta, \"Incremental Wrapper-based subset Selection with replacement: An advantageous alternative to sequential forward selection,\" 2009 IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 367-374, doi: 10.1109/CIDM.2009.4938673.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Multi Feature Selection",
    "version": "0.1.3",
    "project_urls": {
        "Code": "https://github.com/Doctorado-ML/mufs",
        "Homepage": "https://github.com/Doctorado-ML/mufs#mufs"
    },
    "split_keywords": [
        "feature-selection"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "121d9eeeac3eb7b4a3ab75a76ae277e3a077b3404f4f685589820cce35a25c9b",
                "md5": "4a5db87280f400ea7ff28f7d7529235c",
                "sha256": "25cc3005106acfe55188d66f61ac00c8b60760bdf45e09e248182fbd1395345f"
            },
            "downloads": -1,
            "filename": "MUFS-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4a5db87280f400ea7ff28f7d7529235c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 13752,
            "upload_time": "2022-05-19T16:21:43",
            "upload_time_iso_8601": "2022-05-19T16:21:43.791916Z",
            "url": "https://files.pythonhosted.org/packages/12/1d/9eeeac3eb7b4a3ab75a76ae277e3a077b3404f4f685589820cce35a25c9b/MUFS-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c12d9b4e4725e6ed554940bdc233b99e7ff3d0ce2eb05f42e3ca470b801d3bbc",
                "md5": "b5818909f9829f26d00b798f3737641d",
                "sha256": "a4423672b8790f51e7b2fd20b74ab684a74f8597fe7d17bfa5a246a0ecd4a7ec"
            },
            "downloads": -1,
            "filename": "MUFS-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "b5818909f9829f26d00b798f3737641d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 12928,
            "upload_time": "2022-05-19T16:21:45",
            "upload_time_iso_8601": "2022-05-19T16:21:45.728603Z",
            "url": "https://files.pythonhosted.org/packages/c1/2d/9b4e4725e6ed554940bdc233b99e7ff3d0ce2eb05f42e3ca470b801d3bbc/MUFS-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-05-19 16:21:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Doctorado-ML",
    "github_project": "mufs#mufs",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "mufs"
}
        
Elapsed time: 0.89669s