multi-time-series-connectedness


Namemulti-time-series-connectedness JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryNone
upload_time2024-10-31 07:15:07
maintainerNone
docs_urlNone
authorVictor Chen
requires_python>=3.10
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## Project title
Multi Time Series Connectedness

## Motivation
This project is motivated by Financial and Macroeconomics Connectedness created by Diebold and Ylimaz. I want to use this algorithm not only in finance and macroeconomics area but other area, so I start to build this project.

## Installation
```
python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
```

## Feature & Example Code
* calculate volatility
  ```
  python3 volatilities.py --path docs/market_prices --start_at 2024-09-06T00:00:00+01:00 --end_at 2024-09-06T22:27:00+01:00
  ```
* calculate connectedness of all volatility
  ```
  python3 conn.py
  ```
* calculate rolling connectedness
  ```
  python3 rolling_connectedness.py
  ```

## How to use?
* Put a folder with multiple Panel data into docs folder
* Run the commands in feature section

## Credits
http://financialconnectedness.org/

## License
MIT License
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "multi-time-series-connectedness",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Victor Chen",
    "author_email": "victor.yccchen1@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/e8/3b/685e24c5620517c4b89ec00e495fbab6a37ea45b9b91c8262d2134d2be7c/multi_time_series_connectedness-0.2.1.tar.gz",
    "platform": null,
    "description": "## Project title\nMulti Time Series Connectedness\n\n## Motivation\nThis project is motivated by Financial and Macroeconomics Connectedness created by Diebold and Ylimaz. I want to use this algorithm not only in finance and macroeconomics area but other area, so I start to build this project.\n\n## Installation\n```\npython3 -m venv venv\nsource venv/bin/activate\npip3 install -r requirements.txt\n```\n\n## Feature & Example Code\n* calculate volatility\n  ```\n  python3 volatilities.py --path docs/market_prices --start_at 2024-09-06T00:00:00+01:00 --end_at 2024-09-06T22:27:00+01:00\n  ```\n* calculate connectedness of all volatility\n  ```\n  python3 conn.py\n  ```\n* calculate rolling connectedness\n  ```\n  python3 rolling_connectedness.py\n  ```\n\n## How to use?\n* Put a folder with multiple Panel data into docs folder\n* Run the commands in feature section\n\n## Credits\nhttp://financialconnectedness.org/\n\n## License\nMIT License",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": null,
    "version": "0.2.1",
    "project_urls": {
        "repository": "https://github.com/YCChenVictor/multi_time_series_connectedness"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "29b79ee5c88410f26ce563834c8a241d6624f611e36f3fcd6a327f85c1aa441a",
                "md5": "655930b75c3f92fbdeeef529ca7d482d",
                "sha256": "92d55e7fc569ac363168a5916ca64e8788a57f9dc7a2a7dd719401099ed5af46"
            },
            "downloads": -1,
            "filename": "multi_time_series_connectedness-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "655930b75c3f92fbdeeef529ca7d482d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 9698,
            "upload_time": "2024-10-31T07:15:05",
            "upload_time_iso_8601": "2024-10-31T07:15:05.443254Z",
            "url": "https://files.pythonhosted.org/packages/29/b7/9ee5c88410f26ce563834c8a241d6624f611e36f3fcd6a327f85c1aa441a/multi_time_series_connectedness-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e83b685e24c5620517c4b89ec00e495fbab6a37ea45b9b91c8262d2134d2be7c",
                "md5": "92928593b9ecaf74ab312f05bad57f48",
                "sha256": "4342749423cedad45e9fb1620664bb42b35fd08e782d56303bb980a7a9a3bef8"
            },
            "downloads": -1,
            "filename": "multi_time_series_connectedness-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "92928593b9ecaf74ab312f05bad57f48",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 8162,
            "upload_time": "2024-10-31T07:15:07",
            "upload_time_iso_8601": "2024-10-31T07:15:07.138904Z",
            "url": "https://files.pythonhosted.org/packages/e8/3b/685e24c5620517c4b89ec00e495fbab6a37ea45b9b91c8262d2134d2be7c/multi_time_series_connectedness-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-31 07:15:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "YCChenVictor",
    "github_project": "multi_time_series_connectedness",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "multi-time-series-connectedness"
}
        
Elapsed time: 0.33118s