| Name | multidimio JSON |
| Version |
1.0.9
JSON |
| download |
| home_page | None |
| Summary | Cloud-native, scalable, and user-friendly multi dimensional energy data! |
| upload_time | 2025-10-24 20:07:12 |
| maintainer | None |
| docs_url | None |
| author | Altay Sansal |
| requires_python | <3.14,>=3.11 |
| license | None |
| keywords |
mdio
multidimio
seismic
wind
data
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
<div>
<img
class="logo"
src="https://raw.githubusercontent.com/TGSAI/mdio.github.io/gh-pages/assets/images/mdio.png"
alt="MDIO"
width=200
height=auto
style="margin-top:10px;margin-bottom:10px"
/>
</div>
[][install_pip]
[][install_conda]
[][python version]
[][status]
[][apache 2.0 license]
[][tests]
[][codecov]
[][read the docs]
[][pre-commit]
[][ruff]
[][pypi_]
[][conda-forge_]
[pypi_]: https://pypi.org/project/multidimio/
[conda-forge_]: https://anaconda.org/conda-forge/multidimio
[status]: https://pypi.org/project/multidimio/
[python version]: https://pypi.org/project/multidimio
[read the docs]: https://mdio-python.readthedocs.io/
[tests]: https://github.com/TGSAI/mdio-python/actions?workflow=Tests
[codecov]: https://app.codecov.io/gh/TGSAI/mdio-python
[pre-commit]: https://github.com/pre-commit/pre-commit
[ruff]: https://github.com/astral-sh/ruff
[install_pip]: https://mdio-python.readthedocs.io/en/latest/installation.html#using-pip-and-virtualenv
[install_conda]: https://mdio-python.readthedocs.io/en/latest/installation.html#using-conda
> 🎉 MDIO v1 is out. Ingestion and export for SEG-Y is fully functional with templates! However, there may still
> be minor issues. Please report any issues you encounter.
> 🚧👷🏻 We are actively working on updating the documentation and adding missing features to v1 release. Please
> check back later for more updates!
**_"MDIO"_** is a library to work with large multidimensional energy datasets.
The primary motivation behind **MDIO** is to represent multidimensional
time series data in a format that makes it easier to use in resource assessment,
machine learning, and data processing workflows.
See the [documentation][read the docs] for more information.
This is not an official TGS product.
# Features
**Shared Features**
- Abstractions for common energy data types (see below).
- Cloud native chunked storage based on [Zarr][zarr] and [fsspec][fsspec].
- Standardized models for lossy and lossless data compression using [Blosc][blosc] and [ZFP][zfp].
- Distributed reads and writes using [Dask][dask].
- Powerful command-line-interface (CLI) based on [Click][click]
**Domain Specific Features**
- Oil & Gas Data
- Import and export 2D - 5D seismic data types stored in SEG-Y.
- Optimized chunking logic for various seismic types using MDIO templates.
- Native [Xarray][xarray] data model and interface wrapper.
- Import seismic interpretation, horizon, data. **FUTURE**
# Installing MDIO
Simplest way to install _MDIO_ via [pip] from [PyPI]:
```shell
$ pip install multidimio
```
or install _MDIO_ via [conda] from [conda-forge]:
```shell
$ conda install -c conda-forge multidimio
```
> Extras must be installed separately on `Conda` environments.
For details, please see the [installation instructions]
in the documentation.
# Using MDIO
Please see the [Command-line Usage] for details.
For Python API please see the [API Reference] for details.
# Requirements
## Minimal
Chunked storage and parallelization: `zarr`, `dask`, `numba`, and `psutil`.\
SEG-Y Parsing: `TGSAI/segy`\
CLI and Progress Bars: `click`, `click-params`, and `tqdm`.
## Optional
Distributed computing `[distributed]`: `distributed` and `bokeh`.\
Cloud Object Store I/O `[cloud]`: `s3fs`, `gcsfs`, and `adlfs`.\
Lossy Compression `[lossy]`: `zfpy`
# Contributing to MDIO
Contributions are very welcome.
To learn more, see the [Contributor Guide].
# Licensing
Distributed under the terms of the [Apache 2.0 license],
_MDIO_ is free and open source software.
# Issues
If you encounter any problems,
please [file an issue] along with a detailed description.
# Credits
This project was established at [TGS](https://www.tgs.com/). The current maintainer is [Altay Sansal](https://github.com/tasansal) with the support of
many more great colleagues.
[pypi]: https://pypi.org/
[conda-forge]: https://conda-forge.org/
[file an issue]: https://github.com/TGSAI/mdio-python/issues
[pip]: https://pip.pypa.io/
[conda]: https://docs.conda.io/
[dask]: https://www.dask.org/
[zarr]: https://zarr.dev/
[fsspec]: https://filesystem-spec.readthedocs.io/en/latest/
[s3fs]: https://s3fs.readthedocs.io/
[gcsfs]: https://gcsfs.readthedocs.io/
[adlfs]: https://github.com/fsspec/adlfs
[blosc]: https://www.blosc.org/
[zfp]: https://computing.llnl.gov/projects/zfp
[xarray]: https://xarray.dev/
[click]: https://palletsprojects.com/p/click/
<!-- github-only -->
[apache 2.0 license]: https://github.com/TGSAI/mdio-python/blob/main/LICENSE
[contributor guide]: https://github.com/TGSAI/mdio-python/blob/main/CONTRIBUTING.md
[command-line usage]: https://mdio-python.readthedocs.io/en/latest/usage.html
[api reference]: https://mdio-python.readthedocs.io/en/latest/reference.html
[installation instructions]: https://mdio-python.readthedocs.io/en/latest/installation.html
Raw data
{
"_id": null,
"home_page": null,
"name": "multidimio",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.14,>=3.11",
"maintainer_email": null,
"keywords": "mdio, multidimio, seismic, wind, data",
"author": "Altay Sansal",
"author_email": "Altay Sansal <altay.sansal@tgs.com>",
"download_url": "https://files.pythonhosted.org/packages/82/e3/e6adbc5a70da38a6d2754479d2ff01ea4c6990cbd020d39f18367333e00d/multidimio-1.0.9.tar.gz",
"platform": null,
"description": "<div>\n <img\n class=\"logo\"\n src=\"https://raw.githubusercontent.com/TGSAI/mdio.github.io/gh-pages/assets/images/mdio.png\"\n alt=\"MDIO\"\n width=200\n height=auto\n style=\"margin-top:10px;margin-bottom:10px\"\n />\n</div>\n\n[][install_pip]\n[][install_conda]\n[][python version]\n[][status]\n[][apache 2.0 license]\n\n[][tests]\n[][codecov]\n[][read the docs]\n\n[][pre-commit]\n[][ruff]\n\n[][pypi_]\n[][conda-forge_]\n\n[pypi_]: https://pypi.org/project/multidimio/\n[conda-forge_]: https://anaconda.org/conda-forge/multidimio\n[status]: https://pypi.org/project/multidimio/\n[python version]: https://pypi.org/project/multidimio\n[read the docs]: https://mdio-python.readthedocs.io/\n[tests]: https://github.com/TGSAI/mdio-python/actions?workflow=Tests\n[codecov]: https://app.codecov.io/gh/TGSAI/mdio-python\n[pre-commit]: https://github.com/pre-commit/pre-commit\n[ruff]: https://github.com/astral-sh/ruff\n[install_pip]: https://mdio-python.readthedocs.io/en/latest/installation.html#using-pip-and-virtualenv\n[install_conda]: https://mdio-python.readthedocs.io/en/latest/installation.html#using-conda\n\n> \ud83c\udf89 MDIO v1 is out. Ingestion and export for SEG-Y is fully functional with templates! However, there may still\n> be minor issues. Please report any issues you encounter.\n\n> \ud83d\udea7\ud83d\udc77\ud83c\udffb We are actively working on updating the documentation and adding missing features to v1 release. Please\n> check back later for more updates!\n\n**_\"MDIO\"_** is a library to work with large multidimensional energy datasets.\nThe primary motivation behind **MDIO** is to represent multidimensional\ntime series data in a format that makes it easier to use in resource assessment,\nmachine learning, and data processing workflows.\n\nSee the [documentation][read the docs] for more information.\n\nThis is not an official TGS product.\n\n# Features\n\n**Shared Features**\n\n- Abstractions for common energy data types (see below).\n- Cloud native chunked storage based on [Zarr][zarr] and [fsspec][fsspec].\n- Standardized models for lossy and lossless data compression using [Blosc][blosc] and [ZFP][zfp].\n- Distributed reads and writes using [Dask][dask].\n- Powerful command-line-interface (CLI) based on [Click][click]\n\n**Domain Specific Features**\n\n- Oil & Gas Data\n - Import and export 2D - 5D seismic data types stored in SEG-Y.\n - Optimized chunking logic for various seismic types using MDIO templates.\n - Native [Xarray][xarray] data model and interface wrapper.\n - Import seismic interpretation, horizon, data. **FUTURE**\n\n# Installing MDIO\n\nSimplest way to install _MDIO_ via [pip] from [PyPI]:\n\n```shell\n$ pip install multidimio\n```\n\nor install _MDIO_ via [conda] from [conda-forge]:\n\n```shell\n$ conda install -c conda-forge multidimio\n```\n\n> Extras must be installed separately on `Conda` environments.\n\nFor details, please see the [installation instructions]\nin the documentation.\n\n# Using MDIO\n\nPlease see the [Command-line Usage] for details.\n\nFor Python API please see the [API Reference] for details.\n\n# Requirements\n\n## Minimal\n\nChunked storage and parallelization: `zarr`, `dask`, `numba`, and `psutil`.\\\nSEG-Y Parsing: `TGSAI/segy`\\\nCLI and Progress Bars: `click`, `click-params`, and `tqdm`.\n\n## Optional\n\nDistributed computing `[distributed]`: `distributed` and `bokeh`.\\\nCloud Object Store I/O `[cloud]`: `s3fs`, `gcsfs`, and `adlfs`.\\\nLossy Compression `[lossy]`: `zfpy`\n\n# Contributing to MDIO\n\nContributions are very welcome.\nTo learn more, see the [Contributor Guide].\n\n# Licensing\n\nDistributed under the terms of the [Apache 2.0 license],\n_MDIO_ is free and open source software.\n\n# Issues\n\nIf you encounter any problems,\nplease [file an issue] along with a detailed description.\n\n# Credits\n\nThis project was established at [TGS](https://www.tgs.com/). The current maintainer is [Altay Sansal](https://github.com/tasansal) with the support of\nmany more great colleagues.\n\n[pypi]: https://pypi.org/\n[conda-forge]: https://conda-forge.org/\n[file an issue]: https://github.com/TGSAI/mdio-python/issues\n[pip]: https://pip.pypa.io/\n[conda]: https://docs.conda.io/\n[dask]: https://www.dask.org/\n[zarr]: https://zarr.dev/\n[fsspec]: https://filesystem-spec.readthedocs.io/en/latest/\n[s3fs]: https://s3fs.readthedocs.io/\n[gcsfs]: https://gcsfs.readthedocs.io/\n[adlfs]: https://github.com/fsspec/adlfs\n[blosc]: https://www.blosc.org/\n[zfp]: https://computing.llnl.gov/projects/zfp\n[xarray]: https://xarray.dev/\n[click]: https://palletsprojects.com/p/click/\n\n<!-- github-only -->\n\n[apache 2.0 license]: https://github.com/TGSAI/mdio-python/blob/main/LICENSE\n[contributor guide]: https://github.com/TGSAI/mdio-python/blob/main/CONTRIBUTING.md\n[command-line usage]: https://mdio-python.readthedocs.io/en/latest/usage.html\n[api reference]: https://mdio-python.readthedocs.io/en/latest/reference.html\n[installation instructions]: https://mdio-python.readthedocs.io/en/latest/installation.html\n",
"bugtrack_url": null,
"license": null,
"summary": "Cloud-native, scalable, and user-friendly multi dimensional energy data!",
"version": "1.0.9",
"project_urls": {
"documentation": "https://mdio-python.readthedocs.io",
"homepage": "https://mdio.dev/",
"repository": "https://github.com/TGSAI/mdio-python"
},
"split_keywords": [
"mdio",
" multidimio",
" seismic",
" wind",
" data"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "8285e90a1f57cae7d06149cc1ce20632f98feaa41be05fe1cc70f554f86ecf6c",
"md5": "e0a9ea9adc29f3efd9015c864aa48486",
"sha256": "662af2bad8e0d5f0bbbca6ae8538aae958208a1344afd7152f66f174bd06280a"
},
"downloads": -1,
"filename": "multidimio-1.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e0a9ea9adc29f3efd9015c864aa48486",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.14,>=3.11",
"size": 95662,
"upload_time": "2025-10-24T20:07:11",
"upload_time_iso_8601": "2025-10-24T20:07:11.006641Z",
"url": "https://files.pythonhosted.org/packages/82/85/e90a1f57cae7d06149cc1ce20632f98feaa41be05fe1cc70f554f86ecf6c/multidimio-1.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "82e3e6adbc5a70da38a6d2754479d2ff01ea4c6990cbd020d39f18367333e00d",
"md5": "bc81977eab032631ecdece4951612e36",
"sha256": "438a116cdd676ec99a93854d6b747314ca646ef36381bff81e807db3f82e8e47"
},
"downloads": -1,
"filename": "multidimio-1.0.9.tar.gz",
"has_sig": false,
"md5_digest": "bc81977eab032631ecdece4951612e36",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.14,>=3.11",
"size": 70601,
"upload_time": "2025-10-24T20:07:12",
"upload_time_iso_8601": "2025-10-24T20:07:12.431109Z",
"url": "https://files.pythonhosted.org/packages/82/e3/e6adbc5a70da38a6d2754479d2ff01ea4c6990cbd020d39f18367333e00d/multidimio-1.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-24 20:07:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "TGSAI",
"github_project": "mdio-python",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "multidimio"
}