multiego


Namemultiego JSON
Version 0.0.15 PyPI version JSON
download
home_page
SummaryThis is ego method.Some of code are non-originality, just copy for use. All the referenced code are marked,details can be shown in their sources
upload_time2022-12-10 13:57:12
maintainerwangchangxin
docs_urlNone
authorwangchangxin
requires_python>=3.6
license
keywords ego multiplyego
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Multiply EGO

EGO (Efficient global optimization) and multiply target EGO method.

References:
Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Global
Optim. 13, 455–492 (1998)

[![Python Versions](https://img.shields.io/pypi/pyversions/multiego.svg)](https://pypi.org/project/multiego/)
[![Version](https://img.shields.io/github/tag/MGEdata/multiego.svg)](https://github.com/MGEdata/multiego/releases/latest)
![pypi Versions](https://badge.fury.io/py/multiego.svg)

# Install

```bash
pip install multiego
```

# Usage

```bash
if __name__ == "__main__":
    from sklearn.datasets import fetch_california_housing
    import numpy as np
    from multiego.ego import search_space, Ego
    from sklearn.model_selection import GridSearchCV
    from sklearn.svm import SVR

    #####model1#####
    model = SVR() #pre-trained good model with optimized prarmeters for special features
    ###

    X, y = fetch_california_housing(return_X_y=True)
    X = X[:, :5] 
    searchspace_list = [
        np.arange(0.01, 1, 0.1),
        np.array([0, 20, 30, 50, 70, 90]),
        np.arange(1, 10, 1),
        np.array([0, 1]),
        np.arange(0.4, 0.6, 0.02),
    ]
    searchspace = search_space(*searchspace_list)
    #
    me = Ego(searchspace, X, y, 500, model, n_jobs=6)

    re = me.egosearch()
```

Introduction
-------------
[**multiego.ego.Ego**](https://github.com/MGEdata/multiego/blob/master/multiego/ego.py) 

For `sklean-type` single model.

[**multiego.base_ego.BaseEgo**](https://github.com/MGEdata/multiego/blob/master/multiego/base_ego.py)

1. For any user-defined  single model, just need offer mean and std of search space.
2. For  big search space out of memory , just need offer mean and std of search space.

[**multiego.multiplyego.MultiEgo**](https://github.com/MGEdata/multiego/blob/master/multiego/multiplyego.py)

For `sklean-type` models.

[**multiego.base_multiplyego.BaseMultiEgo**](https://github.com/MGEdata/multiego/blob/master/multiego/base_multiplyego.py) 

1. For any user-defined models, just need offer predict_y of search space.
2. For  big search space out of memory, just need offer predict_y of search space.

link
-----------
More examples can be found in [test](https://github.com/MGEdata/multiego/tree/master/test).

More powerful can be found  [mipego](https://github.com/wangronin/MIP-EGO)


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "multiego",
    "maintainer": "wangchangxin",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "ego,multiplyego",
    "author": "wangchangxin",
    "author_email": "986798607@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/93/1a/4958391a3b271b9de5cb1def946cf2823110e868dcf165091a37adc72265/multiego-0.0.15.tar.gz",
    "platform": "Windows",
    "description": "# Multiply EGO\r\n\r\nEGO (Efficient global optimization) and multiply target EGO method.\r\n\r\nReferences:\r\nJones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. J. Global\r\nOptim. 13, 455\u2013492 (1998)\r\n\r\n[![Python Versions](https://img.shields.io/pypi/pyversions/multiego.svg)](https://pypi.org/project/multiego/)\r\n[![Version](https://img.shields.io/github/tag/MGEdata/multiego.svg)](https://github.com/MGEdata/multiego/releases/latest)\r\n![pypi Versions](https://badge.fury.io/py/multiego.svg)\r\n\r\n# Install\r\n\r\n```bash\r\npip install multiego\r\n```\r\n\r\n# Usage\r\n\r\n```bash\r\nif __name__ == \"__main__\":\r\n    from sklearn.datasets import fetch_california_housing\r\n    import numpy as np\r\n    from multiego.ego import search_space, Ego\r\n    from sklearn.model_selection import GridSearchCV\r\n    from sklearn.svm import SVR\r\n\r\n    #####model1#####\r\n    model = SVR() #pre-trained good model with optimized prarmeters for special features\r\n    ###\r\n\r\n    X, y = fetch_california_housing(return_X_y=True)\r\n    X = X[:, :5] \r\n    searchspace_list = [\r\n        np.arange(0.01, 1, 0.1),\r\n        np.array([0, 20, 30, 50, 70, 90]),\r\n        np.arange(1, 10, 1),\r\n        np.array([0, 1]),\r\n        np.arange(0.4, 0.6, 0.02),\r\n    ]\r\n    searchspace = search_space(*searchspace_list)\r\n    #\r\n    me = Ego(searchspace, X, y, 500, model, n_jobs=6)\r\n\r\n    re = me.egosearch()\r\n```\r\n\r\nIntroduction\r\n-------------\r\n[**multiego.ego.Ego**](https://github.com/MGEdata/multiego/blob/master/multiego/ego.py) \r\n\r\nFor `sklean-type` single model.\r\n\r\n[**multiego.base_ego.BaseEgo**](https://github.com/MGEdata/multiego/blob/master/multiego/base_ego.py)\r\n\r\n1. For any user-defined  single model, just need offer mean and std of search space.\r\n2. For  big search space out of memory , just need offer mean and std of search space.\r\n\r\n[**multiego.multiplyego.MultiEgo**](https://github.com/MGEdata/multiego/blob/master/multiego/multiplyego.py)\r\n\r\nFor `sklean-type` models.\r\n\r\n[**multiego.base_multiplyego.BaseMultiEgo**](https://github.com/MGEdata/multiego/blob/master/multiego/base_multiplyego.py) \r\n\r\n1. For any user-defined models, just need offer predict_y of search space.\r\n2. For  big search space out of memory, just need offer predict_y of search space.\r\n\r\nlink\r\n-----------\r\nMore examples can be found in [test](https://github.com/MGEdata/multiego/tree/master/test).\r\n\r\nMore powerful can be found  [mipego](https://github.com/wangronin/MIP-EGO)\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "This is ego method.Some of code are non-originality, just copy for use. All the referenced code are marked,details can be shown in their sources",
    "version": "0.0.15",
    "split_keywords": [
        "ego",
        "multiplyego"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "82904f09280d404f5a9da3dbfef13366",
                "sha256": "32dca1af119f75934a9cab4de204ed172d94ffce1d90175e233e859faa861461"
            },
            "downloads": -1,
            "filename": "multiego-0.0.15.tar.gz",
            "has_sig": false,
            "md5_digest": "82904f09280d404f5a9da3dbfef13366",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 14504,
            "upload_time": "2022-12-10T13:57:12",
            "upload_time_iso_8601": "2022-12-10T13:57:12.526289Z",
            "url": "https://files.pythonhosted.org/packages/93/1a/4958391a3b271b9de5cb1def946cf2823110e868dcf165091a37adc72265/multiego-0.0.15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-10 13:57:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "multiego"
}
        
Elapsed time: 0.16645s