multiprocessing_on_dill


Namemultiprocessing_on_dill JSON
Version 3.5.0a4 PyPI version JSON
download
home_pagehttps://github.com/sixty-north/multiprocessing_on_dill
SummaryA friendly fork of multiprocessing which uses dill instead of pickle
upload_time2015-05-17 12:05:20
maintainerNone
docs_urlNone
authorRobert Smallshire
requires_pythonNone
licensePSFL
keywords multiprocessing parallel
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Multiprocessing on Dill
=======================

This project is a friendly fork – for Python 3 – of the Python Standard Library `multiprocessing
<https://docs.python.org/3/library/multiprocessing.html>`_ module, which uses the third-party
`dill <https://pypi.python.org/pypi/dill>`_ serializer instead of the standard ``pickle`` serializer.  This overcomes
many shortcomings of ``pickle`` which prevent multiprocessing being used with lambdas, closures and other useful Python
objects.

The easiest way to use ``multiprocessing_on_dill`` in place of ``multiprocessing`` is simply to replace any import
statements like this::

    import multiprocessing

with::

    import multiprocessing_on_dill as multiprocessing

and import statements like this::

    from multiprocessing import Pool

with::

    from multiprocessing_on_dill import Pool

With such import changes in place, it will now be possible to use functions like ``Pool.map()`` with lambdas::

    pool = Pool(12)
    result = pool.map(lambda x: x*x, range(10000))

Everything else should be identical to the Python version.

You can determine from which version of the Python Standard Library ``multiprocessing_on_dill`` has been forked, by
examining the ``multiprocessing_on_dill.__version__`` attribute.


Future
======

It is our hope that one day the Python Standard Library ``pickle`` module will gain the additional capabilities of
``dill`` and there will no longer be a need for ``multiprocessing_on_dill`` to exist.
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/sixty-north/multiprocessing_on_dill",
    "name": "multiprocessing_on_dill",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "multiprocessing parallel",
    "author": "Robert Smallshire",
    "author_email": "rob@sixty-north.com",
    "download_url": "https://files.pythonhosted.org/packages/86/4d/4b135e2e5cd0194eb29f2ed36e9a77a07596787a9a8ac2279bd4445398f2/multiprocessing_on_dill-3.5.0a4.tar.gz",
    "platform": "UNKNOWN",
    "description": "Multiprocessing on Dill\n=======================\n\nThis project is a friendly fork \u2013 for Python 3 \u2013 of the Python Standard Library `multiprocessing\n<https://docs.python.org/3/library/multiprocessing.html>`_ module, which uses the third-party\n`dill <https://pypi.python.org/pypi/dill>`_ serializer instead of the standard ``pickle`` serializer.  This overcomes\nmany shortcomings of ``pickle`` which prevent multiprocessing being used with lambdas, closures and other useful Python\nobjects.\n\nThe easiest way to use ``multiprocessing_on_dill`` in place of ``multiprocessing`` is simply to replace any import\nstatements like this::\n\n    import multiprocessing\n\nwith::\n\n    import multiprocessing_on_dill as multiprocessing\n\nand import statements like this::\n\n    from multiprocessing import Pool\n\nwith::\n\n    from multiprocessing_on_dill import Pool\n\nWith such import changes in place, it will now be possible to use functions like ``Pool.map()`` with lambdas::\n\n    pool = Pool(12)\n    result = pool.map(lambda x: x*x, range(10000))\n\nEverything else should be identical to the Python version.\n\nYou can determine from which version of the Python Standard Library ``multiprocessing_on_dill`` has been forked, by\nexamining the ``multiprocessing_on_dill.__version__`` attribute.\n\n\nFuture\n======\n\nIt is our hope that one day the Python Standard Library ``pickle`` module will gain the additional capabilities of\n``dill`` and there will no longer be a need for ``multiprocessing_on_dill`` to exist.",
    "bugtrack_url": null,
    "license": "PSFL",
    "summary": "A friendly fork of multiprocessing which uses dill instead of pickle",
    "version": "3.5.0a4",
    "project_urls": {
        "Download": "UNKNOWN",
        "Homepage": "https://github.com/sixty-north/multiprocessing_on_dill"
    },
    "split_keywords": [
        "multiprocessing",
        "parallel"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "864d4b135e2e5cd0194eb29f2ed36e9a77a07596787a9a8ac2279bd4445398f2",
                "md5": "cd9da5a57987eddb0040939296fe3c3d",
                "sha256": "d6d50c300ff4bd408bb71eb78725e60231039ee9b3d0d9bb7697b9d0e15045e7"
            },
            "downloads": -1,
            "filename": "multiprocessing_on_dill-3.5.0a4.tar.gz",
            "has_sig": false,
            "md5_digest": "cd9da5a57987eddb0040939296fe3c3d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 53330,
            "upload_time": "2015-05-17T12:05:20",
            "upload_time_iso_8601": "2015-05-17T12:05:20.894454Z",
            "url": "https://files.pythonhosted.org/packages/86/4d/4b135e2e5cd0194eb29f2ed36e9a77a07596787a9a8ac2279bd4445398f2/multiprocessing_on_dill-3.5.0a4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2015-05-17 12:05:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sixty-north",
    "github_project": "multiprocessing_on_dill",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "multiprocessing_on_dill"
}
        
Elapsed time: 0.44394s