multiprocshapefinder


Namemultiprocshapefinder JSON
Version 0.12 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/multiprocshapefinder
Summarydetects and analyzes shapes in images using parallel processing.
upload_time2023-11-13 01:54:46
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords multiprocessing shape matching finder
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# detects and analyzes shapes in images using parallel processing. 

## pip install multiprocshapefinder

### Tested against Python 3.11 / Windows 10


### Advantages:

#### Parallel Processing: 

The module utilizes parallel processing (cpus parameter) to speed up the shape detection process, 
which can be advantageous for analyzing multiple images simultaneously.

#### Flexible Input: 

It accepts images in various formats, providing flexibility in the source of the images.

#### Caching: 

The option to use caching (usecache) can save time on the same images.

#### Visualization: 

The module provides a function (draw_results) for visualizing the detected shapes on the original images,
making it easier for users to interpret and verify the results.

#### Configurability: 

The module exposes various parameters, such as Canny edge detection thresholds and contour approximation factors, 
allowing users to fine-tune the shape detection process based on their requirements.


```python

# Importing functions from the multiprocshapefinder module
from multiprocshapefinder import find_all_shapes, draw_results

# List of image URLs to be processed
images = [
    r"https://raw.githubusercontent.com/hansalemaos/screenshots/main/findshapes_1.png",
]  # accepts almost all formats (url/path/buffer/base64/np/PIL) - https://github.com/hansalemaos/a_cv_imwrite_imread_plus

# Calling find_all_shapes function to detect and analyze shapes in the given images
df = find_all_shapes(
    images,
    threshold1=10,
    threshold2=90,
    approxPolyDPvar=0.01,
    cpus=5,  # Number of CPU cores to use for parallel processing
    chunks=1,  # Number of chunks to split the image processing into
    print_stderr=True,  # Print error messages to stderr
    print_stdout=False,  # Do not print standard output messages
    usecache=True,  # Use caching for intermediate results
)

# Printing the resulting DataFrame containing shape information
print(df)

# Calling draw_results function to visualize the detected shapes on the original image
draw_results(
    df,
    images[0],  # Using the first image in the list - filter the DF (df.loc) if len(images)>1
    min_area=5,  # Minimum area threshold for shapes to be considered
    shapes=("rectangle", "triangle", "circle", "pentagon", "hexagon", "oval"),  # Shapes to be visualized
    cv2show=True,  # Display the result using OpenCV
)


```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/multiprocshapefinder",
    "name": "multiprocshapefinder",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "multiprocessing,shape,matching,finder",
    "author": "Johannes Fischer",
    "author_email": "aulasparticularesdealemaosp@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/fe/bf/a17c6e22b771bebd68a16dc85009d3df5be9cf05096b193169181dd636e9/multiprocshapefinder-0.12.tar.gz",
    "platform": null,
    "description": "\r\n# detects and analyzes shapes in images using parallel processing. \r\n\r\n## pip install multiprocshapefinder\r\n\r\n### Tested against Python 3.11 / Windows 10\r\n\r\n\r\n### Advantages:\r\n\r\n#### Parallel Processing: \r\n\r\nThe module utilizes parallel processing (cpus parameter) to speed up the shape detection process, \r\nwhich can be advantageous for analyzing multiple images simultaneously.\r\n\r\n#### Flexible Input: \r\n\r\nIt accepts images in various formats, providing flexibility in the source of the images.\r\n\r\n#### Caching: \r\n\r\nThe option to use caching (usecache) can save time on the same images.\r\n\r\n#### Visualization: \r\n\r\nThe module provides a function (draw_results) for visualizing the detected shapes on the original images,\r\nmaking it easier for users to interpret and verify the results.\r\n\r\n#### Configurability: \r\n\r\nThe module exposes various parameters, such as Canny edge detection thresholds and contour approximation factors, \r\nallowing users to fine-tune the shape detection process based on their requirements.\r\n\r\n\r\n```python\r\n\r\n# Importing functions from the multiprocshapefinder module\r\nfrom multiprocshapefinder import find_all_shapes, draw_results\r\n\r\n# List of image URLs to be processed\r\nimages = [\r\n    r\"https://raw.githubusercontent.com/hansalemaos/screenshots/main/findshapes_1.png\",\r\n]  # accepts almost all formats (url/path/buffer/base64/np/PIL) - https://github.com/hansalemaos/a_cv_imwrite_imread_plus\r\n\r\n# Calling find_all_shapes function to detect and analyze shapes in the given images\r\ndf = find_all_shapes(\r\n    images,\r\n    threshold1=10,\r\n    threshold2=90,\r\n    approxPolyDPvar=0.01,\r\n    cpus=5,  # Number of CPU cores to use for parallel processing\r\n    chunks=1,  # Number of chunks to split the image processing into\r\n    print_stderr=True,  # Print error messages to stderr\r\n    print_stdout=False,  # Do not print standard output messages\r\n    usecache=True,  # Use caching for intermediate results\r\n)\r\n\r\n# Printing the resulting DataFrame containing shape information\r\nprint(df)\r\n\r\n# Calling draw_results function to visualize the detected shapes on the original image\r\ndraw_results(\r\n    df,\r\n    images[0],  # Using the first image in the list - filter the DF (df.loc) if len(images)>1\r\n    min_area=5,  # Minimum area threshold for shapes to be considered\r\n    shapes=(\"rectangle\", \"triangle\", \"circle\", \"pentagon\", \"hexagon\", \"oval\"),  # Shapes to be visualized\r\n    cv2show=True,  # Display the result using OpenCV\r\n)\r\n\r\n\r\n```\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "detects and analyzes shapes in images using parallel processing.",
    "version": "0.12",
    "project_urls": {
        "Homepage": "https://github.com/hansalemaos/multiprocshapefinder"
    },
    "split_keywords": [
        "multiprocessing",
        "shape",
        "matching",
        "finder"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0003287d519f7f7c0487093ffec7bb39480787e2c9d61b0e936c01de7da6d47b",
                "md5": "ad21635077e4f9e634f07ce0a88e7173",
                "sha256": "c7046907a477191be0844dbd646595d6934f62c93a31ab9e4aae2d7693c3aaf7"
            },
            "downloads": -1,
            "filename": "multiprocshapefinder-0.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ad21635077e4f9e634f07ce0a88e7173",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 60403,
            "upload_time": "2023-11-13T01:54:44",
            "upload_time_iso_8601": "2023-11-13T01:54:44.348274Z",
            "url": "https://files.pythonhosted.org/packages/00/03/287d519f7f7c0487093ffec7bb39480787e2c9d61b0e936c01de7da6d47b/multiprocshapefinder-0.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "febfa17c6e22b771bebd68a16dc85009d3df5be9cf05096b193169181dd636e9",
                "md5": "a72a7ca84f3bdb8137e069fb68a5b47c",
                "sha256": "7fe2a715e3d328e6b881e64e483e07b8f996af0f0294a8b1302021ddec0b0593"
            },
            "downloads": -1,
            "filename": "multiprocshapefinder-0.12.tar.gz",
            "has_sig": false,
            "md5_digest": "a72a7ca84f3bdb8137e069fb68a5b47c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 59866,
            "upload_time": "2023-11-13T01:54:46",
            "upload_time_iso_8601": "2023-11-13T01:54:46.083284Z",
            "url": "https://files.pythonhosted.org/packages/fe/bf/a17c6e22b771bebd68a16dc85009d3df5be9cf05096b193169181dd636e9/multiprocshapefinder-0.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-13 01:54:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hansalemaos",
    "github_project": "multiprocshapefinder",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "multiprocshapefinder"
}
        
Elapsed time: 0.31951s