Name | multirotor JSON |
Version |
0.5.0
JSON |
| download |
home_page | |
Summary | Simulation testbed for multirotor vehicles. |
upload_time | 2023-11-04 23:14:15 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.7 |
license | |
keywords |
multirotor
simulation
gym
uav
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# multirotor
Simulation of multi-rotor unmanned aerial vehicles in python.
This package provides an object-oriented interface for modeling and simulating motors, propellers, and airframe of a UAV. Additionally, an OpenAI gym-compatible environment is provided for Reinforcement Learning experiments.
See the Demo jupyter notebook in the repository for a walkthrough.
Code repository: [Github](https://github.com/hazrmard/multirotor), [Gitlab](https://git.isis.vanderbilt.edu/ahmedi/multirotor)
Please cite this as:
```
@inproceedings{ahmed2022multirotor,
title={A high-Fidelity Simulation test-Bed for fault-Tolerant octo-Rotor Control Using Reinforcement Learning},
author={Ahmed, Ibrahim and Quinones-Grueiro, Marcos and Biswas, Gautam},
booktitle={2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC)},
year={2022},
organization={IEEE}
}
```
## Installation
Install from the Python Package Index (PyPI):
```bash
pip install multirotor
```
Or, clone repository and install for development. This will allow you to change the code of the package so the changes show up when you `import multirotor` in other projects.
```bash
git clone https://github.com/hazrmard/multirotor.git
cd multirotor
pip install -e .
# to also install dependencies for building package/documentation
pip install -e .[DEV]
pip install -r docs/requirements.txt
```
## Code organization
The following main classes are available in the code. For simulating the vehicle:
![](./_static/vehicle_classdiagram.png)
And for simulating control:
![](./_static/controller_classdiagram.png)
Raw data
{
"_id": null,
"home_page": "",
"name": "multirotor",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "multirotor,simulation,gym,uav",
"author": "",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/a9/ef/2ff9faa843e997019caa400c7e64983f2c68894cff01aa6df82b5408e006/multirotor-0.5.0.tar.gz",
"platform": null,
"description": "# multirotor\n\nSimulation of multi-rotor unmanned aerial vehicles in python.\n\nThis package provides an object-oriented interface for modeling and simulating motors, propellers, and airframe of a UAV. Additionally, an OpenAI gym-compatible environment is provided for Reinforcement Learning experiments.\n\nSee the Demo jupyter notebook in the repository for a walkthrough.\n\nCode repository: [Github](https://github.com/hazrmard/multirotor), [Gitlab](https://git.isis.vanderbilt.edu/ahmedi/multirotor)\n\nPlease cite this as:\n\n```\n@inproceedings{ahmed2022multirotor,\n title={A high-Fidelity Simulation test-Bed for fault-Tolerant octo-Rotor Control Using Reinforcement Learning},\n author={Ahmed, Ibrahim and Quinones-Grueiro, Marcos and Biswas, Gautam},\n booktitle={2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC)},\n year={2022},\n organization={IEEE}\n}\n```\n\n## Installation\n\nInstall from the Python Package Index (PyPI):\n\n```bash\npip install multirotor\n```\n\nOr, clone repository and install for development. This will allow you to change the code of the package so the changes show up when you `import multirotor` in other projects.\n\n```bash\ngit clone https://github.com/hazrmard/multirotor.git\ncd multirotor\npip install -e .\n\n# to also install dependencies for building package/documentation\npip install -e .[DEV]\npip install -r docs/requirements.txt\n```\n\n## Code organization\n\nThe following main classes are available in the code. For simulating the vehicle:\n![](./_static/vehicle_classdiagram.png)\n\nAnd for simulating control:\n![](./_static/controller_classdiagram.png)\n",
"bugtrack_url": null,
"license": "",
"summary": "Simulation testbed for multirotor vehicles.",
"version": "0.5.0",
"project_urls": null,
"split_keywords": [
"multirotor",
"simulation",
"gym",
"uav"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0e04eee9ea932d5b6712b68d18a53ba4b6ea311318b687ee301986a43bb7594c",
"md5": "d5590f812d2f8882767f1d9d843fd0c1",
"sha256": "45f53b07241c87e52768cc22523311c0950ce904cb3569c2a47c5b31f20e1f00"
},
"downloads": -1,
"filename": "multirotor-0.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d5590f812d2f8882767f1d9d843fd0c1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 42674,
"upload_time": "2023-11-04T23:14:12",
"upload_time_iso_8601": "2023-11-04T23:14:12.697778Z",
"url": "https://files.pythonhosted.org/packages/0e/04/eee9ea932d5b6712b68d18a53ba4b6ea311318b687ee301986a43bb7594c/multirotor-0.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a9ef2ff9faa843e997019caa400c7e64983f2c68894cff01aa6df82b5408e006",
"md5": "a7af4be4028e6da4f61d8307dee162a9",
"sha256": "470ea74bdf25f1f593900c695b6367cf0b3e7f25065b8357f4f388f3c7b9b2dc"
},
"downloads": -1,
"filename": "multirotor-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "a7af4be4028e6da4f61d8307dee162a9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 38600,
"upload_time": "2023-11-04T23:14:15",
"upload_time_iso_8601": "2023-11-04T23:14:15.425688Z",
"url": "https://files.pythonhosted.org/packages/a9/ef/2ff9faa843e997019caa400c7e64983f2c68894cff01aa6df82b5408e006/multirotor-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-04 23:14:15",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "multirotor"
}