multivariate-view


Namemultivariate-view JSON
Version 0.1.2 PyPI version JSON
download
home_pageNone
SummaryRadVolViz-inspired multivariate volume visualizer using VTK
upload_time2024-10-04 19:16:06
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseCopyright 2024 Kitware Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
keywords web trame vtk radvolviz multivariate volume
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # MultivariateView

![full](https://github.com/Kitware/multivariate-view/assets/9558430/3393742f-cb6f-4c1a-b67c-bf189f04f783)

A multivariate/multimodal volume visualizer!

This [RadVolViz](https://doi.org/10.1109/TVCG.2023.3263856)-inspired prototype utilizes [trame](https://kitware.github.io/trame/) and [VTK](https://vtk.org/) to render multi-channel volumetric datasets.

# Install and Run

To install, first ensure you are in an environment using Python3.10 or newer, and then run the following command:

```bash
pip install multivariate-view
```

Next, run `multivariate-view`, or `mv-view`, to start the application. If no `--data` path is provided, it will
automatically download and load the example dataset pictured above.

## Development build

```bash
cd vue-components
npm i
npm run build
cd -
pip install -U pip
pip install -e .
```

# Example Data
The example dataset pictured above is from the reconstruction of an X-ray fluorescence tomography of a mixed ionic-electronic conductor (MIEC) from the following article:

*Ge, M., Huang, X., Yan, H. et al. Three-dimensional imaging of grain boundaries via quantitative fluorescence X-ray tomography analysis. Commun Mater 3, 37 (2022). https://doi.org/10.1038/s43246-022-00259-x*

This example dataset is downloaded automatically and loaded if the application is started without providing a `--data` path. Utilizing the lens in MultivariateView produces visualizations of the following phases:

## CGO Phase (ionic conductor)
![cgo](https://github.com/Kitware/multivariate-view/assets/9558430/10632b37-e893-4a07-8468-da6fc6bfb513)

## CFO Phase (electronic conductor)
![cfo](https://github.com/Kitware/multivariate-view/assets/9558430/d7806e34-a13c-4608-8100-9c0df88d5b40)

## EP2 Phase (emergent phase)
![ep2](https://github.com/Kitware/multivariate-view/assets/9558430/bc48c45c-0ecd-4853-86c3-d82779c28e44)

*Note: the EP1 phase from the paper is comprised of fewer voxels and is more difficult to visualize without data filters*

# Data Loading

Two of the easiest formats to use are HDF5 and NPZ. For both of these file types, each channel of the volume should have its own dataset at the top level, and each dataset must be identical in shape and datatype. There should be no other datasets present.

If the application is started with `multivariate-view --data /path/to/data.h5`, then all root level datasets will be loaded automatically and visualized.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "multivariate-view",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "Patrick Avery <patrick.avery@kitware.com>, Sankhesh Jhaveri <sankhesh.jhaveri@kitware.com>, Sebastien Jourdain <sebastien.jourdain@kitware.com>",
    "keywords": "web, trame, vtk, radvolviz, multivariate, volume",
    "author": null,
    "author_email": "Patrick Avery <patrick.avery@kitware.com>, Sankhesh Jhaveri <sankhesh.jhaveri@kitware.com>, Sebastien Jourdain <sebastien.jourdain@kitware.com>",
    "download_url": "https://files.pythonhosted.org/packages/49/a7/86906866b028f78551ea4300c53f2dab36144cec53841f6d0f2d68ab5b7b/multivariate_view-0.1.2.tar.gz",
    "platform": null,
    "description": "# MultivariateView\n\n![full](https://github.com/Kitware/multivariate-view/assets/9558430/3393742f-cb6f-4c1a-b67c-bf189f04f783)\n\nA multivariate/multimodal volume visualizer!\n\nThis [RadVolViz](https://doi.org/10.1109/TVCG.2023.3263856)-inspired prototype utilizes [trame](https://kitware.github.io/trame/) and [VTK](https://vtk.org/) to render multi-channel volumetric datasets.\n\n# Install and Run\n\nTo install, first ensure you are in an environment using Python3.10 or newer, and then run the following command:\n\n```bash\npip install multivariate-view\n```\n\nNext, run `multivariate-view`, or `mv-view`, to start the application. If no `--data` path is provided, it will\nautomatically download and load the example dataset pictured above.\n\n## Development build\n\n```bash\ncd vue-components\nnpm i\nnpm run build\ncd -\npip install -U pip\npip install -e .\n```\n\n# Example Data\nThe example dataset pictured above is from the reconstruction of an X-ray fluorescence tomography of a mixed ionic-electronic conductor (MIEC) from the following article:\n\n*Ge, M., Huang, X., Yan, H. et al. Three-dimensional imaging of grain boundaries via quantitative fluorescence X-ray tomography analysis. Commun Mater 3, 37 (2022). https://doi.org/10.1038/s43246-022-00259-x*\n\nThis example dataset is downloaded automatically and loaded if the application is started without providing a `--data` path. Utilizing the lens in MultivariateView produces visualizations of the following phases:\n\n## CGO Phase (ionic conductor)\n![cgo](https://github.com/Kitware/multivariate-view/assets/9558430/10632b37-e893-4a07-8468-da6fc6bfb513)\n\n## CFO Phase (electronic conductor)\n![cfo](https://github.com/Kitware/multivariate-view/assets/9558430/d7806e34-a13c-4608-8100-9c0df88d5b40)\n\n## EP2 Phase (emergent phase)\n![ep2](https://github.com/Kitware/multivariate-view/assets/9558430/bc48c45c-0ecd-4853-86c3-d82779c28e44)\n\n*Note: the EP1 phase from the paper is comprised of fewer voxels and is more difficult to visualize without data filters*\n\n# Data Loading\n\nTwo of the easiest formats to use are HDF5 and NPZ. For both of these file types, each channel of the volume should have its own dataset at the top level, and each dataset must be identical in shape and datatype. There should be no other datasets present.\n\nIf the application is started with `multivariate-view --data /path/to/data.h5`, then all root level datasets will be loaded automatically and visualized.\n",
    "bugtrack_url": null,
    "license": "Copyright 2024 Kitware Inc.  Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at  http://www.apache.org/licenses/LICENSE-2.0  Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ",
    "summary": "RadVolViz-inspired multivariate volume visualizer using VTK",
    "version": "0.1.2",
    "project_urls": null,
    "split_keywords": [
        "web",
        " trame",
        " vtk",
        " radvolviz",
        " multivariate",
        " volume"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "71badbcadbe4f9fa4164e44d7f118913c3c2553f3fd7744fe3c11400bdb24204",
                "md5": "2f987c69fd5161719c6fc201313e1589",
                "sha256": "3280e3271e72d604ce324a05831d4d018906a5fba58e2097bd58eed2b36662a8"
            },
            "downloads": -1,
            "filename": "multivariate_view-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2f987c69fd5161719c6fc201313e1589",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 1845188,
            "upload_time": "2024-10-04T19:16:03",
            "upload_time_iso_8601": "2024-10-04T19:16:03.849165Z",
            "url": "https://files.pythonhosted.org/packages/71/ba/dbcadbe4f9fa4164e44d7f118913c3c2553f3fd7744fe3c11400bdb24204/multivariate_view-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "49a786906866b028f78551ea4300c53f2dab36144cec53841f6d0f2d68ab5b7b",
                "md5": "6584e9166c847723491f3d7995e1f9e7",
                "sha256": "193d6007b2af59eac0f13139743358a5a11f05334e267b98ac38293c543f1d1e"
            },
            "downloads": -1,
            "filename": "multivariate_view-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "6584e9166c847723491f3d7995e1f9e7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1782395,
            "upload_time": "2024-10-04T19:16:06",
            "upload_time_iso_8601": "2024-10-04T19:16:06.344142Z",
            "url": "https://files.pythonhosted.org/packages/49/a7/86906866b028f78551ea4300c53f2dab36144cec53841f6d0f2d68ab5b7b/multivariate_view-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-04 19:16:06",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "multivariate-view"
}
        
Elapsed time: 0.30450s