mxlbricks


Namemxlbricks JSON
Version 0.6.0 PyPI version JSON
download
home_pageNone
SummaryA package to build metabolic models
upload_time2025-09-11 08:53:26
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords metabolic modelling ode
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
    <img src="https://raw.githubusercontent.com/Computational-Biology-Aachen/mxl-bricks/refs/heads/main/docs/assets/logo.png" width="400px" alt='mxlbricks-logo'>
</p>

# MxlBricks

[![pypi](https://img.shields.io/pypi/v/mxlbricks.svg)](https://pypi.python.org/pypi/mxlbricks)
[![docs][docs-badge]][docs]
![License](https://img.shields.io/badge/license-MIT-blue?style=flat-square)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![security: bandit](https://img.shields.io/badge/security-bandit-yellow.svg)](https://github.com/PyCQA/bandit)
[![PyPI Downloads](https://static.pepy.tech/badge/mxlbricks)](https://pepy.tech/projects/mxlbricks)

[docs-badge]: https://img.shields.io/badge/docs-main-green.svg?style=flat-square
[docs]: https://computational-biology-aachen.github.io/mxl-bricks/

MxlBricks is a Python package to build mechanistic models composed of pre-defined reactions (bricks). This facilitates re-use and interoperability between different models by sharing common parts.

## Installation


You can install mxlpy using pip: `pip install mxlbricks`.


If you want access to the sundials solver suite via the [assimulo](https://jmodelica.org/assimulo/) package, we recommend setting up a virtual environment via [pixi](https://pixi.sh/) or [mamba / conda](https://mamba.readthedocs.io/en/latest/) using the [conda-forge](https://conda-forge.org/) channel.

```bash
pixi init
pixi add python assimulo
pixi add --pypi mxlbricks
```


## Development setup

Install pixi [as described in the docs](https://pixi.sh/latest/#installation).

Run

```bash
pixi instal
```


## Models

| Name                 | Description                                                                 |
| -------------------- | --------------------------------------------------------------------------- |
| Ebenhöh 2011         | PSII & two-state quencher & ATP synthase                                    |
| Ebenhöh 2014         | PETC & state transitions & ATP synthase from Ebenhoeh 2011                  |
| Matuszyńska 2016 NPQ | 2011 + PSII & four-state quencher                                           |
| Matuszyńska 2016 PhD | ?                                                                           |
| Matuszyńska 2019     | Merges PETC (Ebenhöh 2014), NPQ (Matuszynska 2016) and CBB (Poolman 2000)   |
| Saadat 2021          | 2019 + Mehler (Valero ?) & Thioredoxin & extendend PSI states & consumption |
| van Aalst 2023       | Saadat 2021 & Yokota 1985 & Witzel 2010                                     |


## References

| Name         | Description                                           |
| ------------ | ----------------------------------------------------- |
| Poolman 2000 | CBB cycle, based on Pettersson & Ryde-Pettersson 1988 |
| Yokota 1985  | Photorespiration                                      |
| Valero ?     |                                                       |

## Tool family 🏠

`MxlPy` is part of a larger family of tools that are designed with a similar set of abstractions. Check them out!

- [MxlPy](https://github.com/Computational-Biology-Aachen/MxlPy) is a Python package for mechanistic learning (Mxl)
- [MxlWeb](https://github.com/Computational-Biology-Aachen/mxl-web) brings simulation of mechanistic models to the browser!

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "mxlbricks",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": "Marvin van Aalst <marvin.vanaalst@gmail.com>",
    "keywords": "metabolic, modelling, ode",
    "author": null,
    "author_email": "Marvin van Aalst <marvin.vanaalst@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/88/e9/a1a68918c0a626cdaf1886b8f60e321a1c28644a602957a5737e73d4c068/mxlbricks-0.6.0.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n    <img src=\"https://raw.githubusercontent.com/Computational-Biology-Aachen/mxl-bricks/refs/heads/main/docs/assets/logo.png\" width=\"400px\" alt='mxlbricks-logo'>\n</p>\n\n# MxlBricks\n\n[![pypi](https://img.shields.io/pypi/v/mxlbricks.svg)](https://pypi.python.org/pypi/mxlbricks)\n[![docs][docs-badge]][docs]\n![License](https://img.shields.io/badge/license-MIT-blue?style=flat-square)\n[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)\n[![security: bandit](https://img.shields.io/badge/security-bandit-yellow.svg)](https://github.com/PyCQA/bandit)\n[![PyPI Downloads](https://static.pepy.tech/badge/mxlbricks)](https://pepy.tech/projects/mxlbricks)\n\n[docs-badge]: https://img.shields.io/badge/docs-main-green.svg?style=flat-square\n[docs]: https://computational-biology-aachen.github.io/mxl-bricks/\n\nMxlBricks is a Python package to build mechanistic models composed of pre-defined reactions (bricks). This facilitates re-use and interoperability between different models by sharing common parts.\n\n## Installation\n\n\nYou can install mxlpy using pip: `pip install mxlbricks`.\n\n\nIf you want access to the sundials solver suite via the [assimulo](https://jmodelica.org/assimulo/) package, we recommend setting up a virtual environment via [pixi](https://pixi.sh/) or [mamba / conda](https://mamba.readthedocs.io/en/latest/) using the [conda-forge](https://conda-forge.org/) channel.\n\n```bash\npixi init\npixi add python assimulo\npixi add --pypi mxlbricks\n```\n\n\n## Development setup\n\nInstall pixi [as described in the docs](https://pixi.sh/latest/#installation).\n\nRun\n\n```bash\npixi instal\n```\n\n\n## Models\n\n| Name                 | Description                                                                 |\n| -------------------- | --------------------------------------------------------------------------- |\n| Ebenh\u00f6h 2011         | PSII & two-state quencher & ATP synthase                                    |\n| Ebenh\u00f6h 2014         | PETC & state transitions & ATP synthase from Ebenhoeh 2011                  |\n| Matuszy\u0144ska 2016 NPQ | 2011 + PSII & four-state quencher                                           |\n| Matuszy\u0144ska 2016 PhD | ?                                                                           |\n| Matuszy\u0144ska 2019     | Merges PETC (Ebenh\u00f6h 2014), NPQ (Matuszynska 2016) and CBB (Poolman 2000)   |\n| Saadat 2021          | 2019 + Mehler (Valero ?) & Thioredoxin & extendend PSI states & consumption |\n| van Aalst 2023       | Saadat 2021 & Yokota 1985 & Witzel 2010                                     |\n\n\n## References\n\n| Name         | Description                                           |\n| ------------ | ----------------------------------------------------- |\n| Poolman 2000 | CBB cycle, based on Pettersson & Ryde-Pettersson 1988 |\n| Yokota 1985  | Photorespiration                                      |\n| Valero ?     |                                                       |\n\n## Tool family \ud83c\udfe0\n\n`MxlPy` is part of a larger family of tools that are designed with a similar set of abstractions. Check them out!\n\n- [MxlPy](https://github.com/Computational-Biology-Aachen/MxlPy) is a Python package for mechanistic learning (Mxl)\n- [MxlWeb](https://github.com/Computational-Biology-Aachen/mxl-web) brings simulation of mechanistic models to the browser!\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package to build metabolic models",
    "version": "0.6.0",
    "project_urls": null,
    "split_keywords": [
        "metabolic",
        " modelling",
        " ode"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "03e650a1bc327110c197f68f38e85751c7008e000e3b82941ad31fa0f5ac54d5",
                "md5": "0ba50ab406c8f13069c99d532fae21b9",
                "sha256": "11bb32dd989c0b4dcea94d3d0bce7623ad573b5a6454f388efc8aca32549a8b9"
            },
            "downloads": -1,
            "filename": "mxlbricks-0.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0ba50ab406c8f13069c99d532fae21b9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 107812,
            "upload_time": "2025-09-11T08:53:24",
            "upload_time_iso_8601": "2025-09-11T08:53:24.062042Z",
            "url": "https://files.pythonhosted.org/packages/03/e6/50a1bc327110c197f68f38e85751c7008e000e3b82941ad31fa0f5ac54d5/mxlbricks-0.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "88e9a1a68918c0a626cdaf1886b8f60e321a1c28644a602957a5737e73d4c068",
                "md5": "2757bf09450aa1c27df33672795a4b20",
                "sha256": "18dc37b18a5c8bfdb2ce45c61d48d34bb9b543cbcdb333c965675c8a6e08ed43"
            },
            "downloads": -1,
            "filename": "mxlbricks-0.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2757bf09450aa1c27df33672795a4b20",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 711575,
            "upload_time": "2025-09-11T08:53:26",
            "upload_time_iso_8601": "2025-09-11T08:53:26.462545Z",
            "url": "https://files.pythonhosted.org/packages/88/e9/a1a68918c0a626cdaf1886b8f60e321a1c28644a602957a5737e73d4c068/mxlbricks-0.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-11 08:53:26",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "mxlbricks"
}
        
Elapsed time: 3.52188s