Name | mxlpy JSON |
Version |
0.23.0
JSON |
| download |
home_page | None |
Summary | A package to build metabolic models |
upload_time | 2025-07-11 10:54:21 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.12 |
license | None |
keywords |
metabolic
modelling
ode
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<p align="center">
<img src="https://raw.githubusercontent.com/Computational-Biology-Aachen/MxlPy/refs/heads/main/docs/assets/logo-diagram.png" width="600px" alt='mxlpy-logo'>
</p>
# MxlPy
[](https://pypi.python.org/pypi/mxlpy)
[![docs][docs-badge]][docs]


[](https://github.com/astral-sh/ruff)
[](https://github.com/PyCQA/bandit)
[](https://pepy.tech/projects/mxlpy)
[docs-badge]: https://img.shields.io/badge/docs-main-green.svg?style=flat-square
[docs]: https://computational-biology-aachen.github.io/mxlpy/
MxlPy (pronounced "em axe el pie") is a Python package for mechanistic learning (Mxl) - the combination of mechanistic modeling and machine learning to deliver explainable, data-informed solutions.
## Installation
You can install mxlpy using pip: `pip install mxlpy`.
Due to their sizes, the machine learning packages are optional dependencies. You can install them using
```shell
# One of them respectively
pip install mxlpy[torch]
pip install mxlpy[tensorflow]
pip install mxlpy[keras]
# together
pip install mxlpy[torch, tensorflow, keras]
```
If you want access to the sundials solver suite via the [assimulo](https://jmodelica.org/assimulo/) package, we recommend setting up a virtual environment via [pixi](https://pixi.sh/) or [mamba / conda](https://mamba.readthedocs.io/en/latest/) using the [conda-forge](https://conda-forge.org/) channel.
```bash
pixi init
pixi add python assimulo
pixi add --pypi mxlpy
```
## How to cite
If you use this software in your scientific work, please cite [this article](https://doi.org/10.1101/2025.05.06.652335):
- [doi](https://doi.org/10.1101/2025.05.06.652335)
- [bibtex file](https://github.com/Computational-Biology-Aachen/MxlPy/citation.bibtex)
## Development setup
You have two choices here, using `uv` (pypi-only) or using `pixi` (conda-forge, including assimulo)
### uv
- Install `uv` as described in [the docs](https://docs.astral.sh/uv/getting-started/installation/).
- Run `uv sync --all-extras --all-groups` to install dependencies locally
### pixi
- Install `pixi` as described in [the docs](https://pixi.sh/latest/#installation)
- Run `pixi install --frozen`
Raw data
{
"_id": null,
"home_page": null,
"name": "mxlpy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12",
"maintainer_email": "Marvin van Aalst <marvin.vanaalst@gmail.com>",
"keywords": "metabolic, modelling, ode",
"author": null,
"author_email": "Marvin van Aalst <marvin.vanaalst@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/31/95/f26487a6edbe7ea8dec0807617af5a14ffacb41a47bd5ac4731e304d1622/mxlpy-0.23.0.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <img src=\"https://raw.githubusercontent.com/Computational-Biology-Aachen/MxlPy/refs/heads/main/docs/assets/logo-diagram.png\" width=\"600px\" alt='mxlpy-logo'>\n</p>\n\n\n\n# MxlPy\n\n[](https://pypi.python.org/pypi/mxlpy)\n[![docs][docs-badge]][docs]\n\n\n[](https://github.com/astral-sh/ruff)\n[](https://github.com/PyCQA/bandit)\n[](https://pepy.tech/projects/mxlpy)\n\n[docs-badge]: https://img.shields.io/badge/docs-main-green.svg?style=flat-square\n[docs]: https://computational-biology-aachen.github.io/mxlpy/\n\nMxlPy (pronounced \"em axe el pie\") is a Python package for mechanistic learning (Mxl) - the combination of mechanistic modeling and machine learning to deliver explainable, data-informed solutions.\n\n## Installation\n\nYou can install mxlpy using pip: `pip install mxlpy`.\n\nDue to their sizes, the machine learning packages are optional dependencies. You can install them using\n\n```shell\n# One of them respectively\npip install mxlpy[torch]\npip install mxlpy[tensorflow]\npip install mxlpy[keras]\n\n# together\npip install mxlpy[torch, tensorflow, keras]\n```\n\nIf you want access to the sundials solver suite via the [assimulo](https://jmodelica.org/assimulo/) package, we recommend setting up a virtual environment via [pixi](https://pixi.sh/) or [mamba / conda](https://mamba.readthedocs.io/en/latest/) using the [conda-forge](https://conda-forge.org/) channel.\n\n```bash\npixi init\npixi add python assimulo\npixi add --pypi mxlpy\n```\n\n## How to cite\n\nIf you use this software in your scientific work, please cite [this article](https://doi.org/10.1101/2025.05.06.652335):\n\n- [doi](https://doi.org/10.1101/2025.05.06.652335)\n- [bibtex file](https://github.com/Computational-Biology-Aachen/MxlPy/citation.bibtex)\n\n\n## Development setup\n\nYou have two choices here, using `uv` (pypi-only) or using `pixi` (conda-forge, including assimulo)\n\n### uv\n\n- Install `uv` as described in [the docs](https://docs.astral.sh/uv/getting-started/installation/).\n- Run `uv sync --all-extras --all-groups` to install dependencies locally\n\n### pixi\n\n- Install `pixi` as described in [the docs](https://pixi.sh/latest/#installation)\n- Run `pixi install --frozen`\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "A package to build metabolic models",
"version": "0.23.0",
"project_urls": null,
"split_keywords": [
"metabolic",
" modelling",
" ode"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "976bfc01b52722ef670ba79058625a20eb6cee62c4aceca4f01d95e542c6ba9c",
"md5": "4ae1abd6aca1e03f888ce4db6cf34785",
"sha256": "395e8ff246d54d17d0a8e3683e6d13636fa1d2767f3b0b401e5cffea44ea69b0"
},
"downloads": -1,
"filename": "mxlpy-0.23.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4ae1abd6aca1e03f888ce4db6cf34785",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12",
"size": 121335,
"upload_time": "2025-07-11T10:54:19",
"upload_time_iso_8601": "2025-07-11T10:54:19.379279Z",
"url": "https://files.pythonhosted.org/packages/97/6b/fc01b52722ef670ba79058625a20eb6cee62c4aceca4f01d95e542c6ba9c/mxlpy-0.23.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3195f26487a6edbe7ea8dec0807617af5a14ffacb41a47bd5ac4731e304d1622",
"md5": "cbe103663e9b401fe88a84c5ab2de60f",
"sha256": "d99a79f574077157ed86182852ad3f8e0b78505b19584c24b9dae9519d5bafeb"
},
"downloads": -1,
"filename": "mxlpy-0.23.0.tar.gz",
"has_sig": false,
"md5_digest": "cbe103663e9b401fe88a84c5ab2de60f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12",
"size": 4876821,
"upload_time": "2025-07-11T10:54:21",
"upload_time_iso_8601": "2025-07-11T10:54:21.405719Z",
"url": "https://files.pythonhosted.org/packages/31/95/f26487a6edbe7ea8dec0807617af5a14ffacb41a47bd5ac4731e304d1622/mxlpy-0.23.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-11 10:54:21",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "mxlpy"
}