naamkaran: Generative model for names
-------------------------------------
.. image:: https://github.com/appeler/naamkaran/workflows/test/badge.svg
:target: https://github.com/appeler/naamkaran/actions?query=workflow%3Atest
.. image:: https://img.shields.io/pypi/v/naamkaran.svg
:target: https://pypi.python.org/pypi/naamkaran
.. image:: https://pepy.tech/badge/naamkaran
:target: https://pepy.tech/project/naamkaran
Naamkaran is a generative model for names. It is a simple character-level RNN that predicts
the next character given the previous characters. The model is trained on a list of names from
FL Voter Registration Data and can be used to generate new names.
Installation
------------
Naamkaran can be installed from PyPI using pip:
.. code-block:: bash
pip install naamkaran
General API
-----------
The general API for naamkaran is as follows:
::
# naamkaran is the package name
from naamkaran.generate import generate_names
# generate_names is the function that generates names
# it takes a start_letter and a number of names to generate
# generate 10 names starting with 'A'
generate_names('A', how_many=10)
positional arguments:
start_letter The letter to start the name with
optional arguments:
end_letter The letter to end the name with (default: None)
how_many The number of names to generate (default: 1)
max_length The maximum length of the name (default: 5)
gender The gender of the name (default: "M")
temperature The temperature of the model (default: 0.5)
# generate 10 names starting with 'A' and ending with 'n'
generate_names('A', end_letter='n', how_many=10)
# generate 10 names starting with 'A' and ending with 'n' with a maximum length of 4
generate_names('A', end_letter='n', how_many=10, max_length=4)
# generate 10 names starting with 'A' and ending with 'n' with a maximum length of 6
# and a temperature of 0.5
generate_names('A', end_letter='n', how_many=5, max_length=6, temperature=0.5)
# generate 10 female names starting with 'A' and ending with 'n' with a maximum length of 5
# and a temperature of 0.5
generate_names('A', end_letter='e', how_many=10, max_length=5, gender="F", temperature=0.5)
Data
----
The data used to train the model is from the Florida Voter Registration Data from early 2022.
The data is available here - `Florida voter registration database <http://dx.doi.org/10.7910/DVN/UBIG3F>`__
Authors
-------
Rajashekar Chintalapati and Gaurav Sood
Contributing
------------
Contributions are welcome. Please open an issue if you find a bug or have a feature request.
License
-------
The package is released under the `MIT License <https://opensource.org/licenses/MIT>`_.
Raw data
{
"_id": null,
"home_page": "https://github.com/appeler/naamkaran",
"name": "naamkaran",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "generate names",
"author": "Rajashekar Chintalapati, Gaurav Sood",
"author_email": "rajshekar.ch@gmail.com, gsood07@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f6/68/5605c890f3c9d67e444e25d5510668ddbba8dfa289c19b74b85c91182485/naamkaran-0.0.1.tar.gz",
"platform": null,
"description": "naamkaran: Generative model for names\n-------------------------------------\n\n.. image:: https://github.com/appeler/naamkaran/workflows/test/badge.svg\n :target: https://github.com/appeler/naamkaran/actions?query=workflow%3Atest\n.. image:: https://img.shields.io/pypi/v/naamkaran.svg\n :target: https://pypi.python.org/pypi/naamkaran\n.. image:: https://pepy.tech/badge/naamkaran\n :target: https://pepy.tech/project/naamkaran\n\nNaamkaran is a generative model for names. It is a simple character-level RNN that predicts \nthe next character given the previous characters. The model is trained on a list of names from \nFL Voter Registration Data and can be used to generate new names.\n\nInstallation\n------------\n\nNaamkaran can be installed from PyPI using pip:\n\n.. code-block:: bash\n\n pip install naamkaran\n\nGeneral API\n-----------\n\nThe general API for naamkaran is as follows:\n\n:: \n\n # naamkaran is the package name\n from naamkaran.generate import generate_names\n\n # generate_names is the function that generates names\n # it takes a start_letter and a number of names to generate\n\n # generate 10 names starting with 'A'\n generate_names('A', how_many=10)\n\n positional arguments:\n start_letter The letter to start the name with\n\n optional arguments:\n end_letter The letter to end the name with (default: None)\n how_many The number of names to generate (default: 1)\n max_length The maximum length of the name (default: 5)\n gender The gender of the name (default: \"M\")\n temperature The temperature of the model (default: 0.5)\n\n # generate 10 names starting with 'A' and ending with 'n'\n generate_names('A', end_letter='n', how_many=10)\n\n # generate 10 names starting with 'A' and ending with 'n' with a maximum length of 4\n generate_names('A', end_letter='n', how_many=10, max_length=4)\n\n # generate 10 names starting with 'A' and ending with 'n' with a maximum length of 6\n # and a temperature of 0.5\n generate_names('A', end_letter='n', how_many=5, max_length=6, temperature=0.5)\n\n # generate 10 female names starting with 'A' and ending with 'n' with a maximum length of 5\n # and a temperature of 0.5\n generate_names('A', end_letter='e', how_many=10, max_length=5, gender=\"F\", temperature=0.5)\n\n\nData\n----\n\nThe data used to train the model is from the Florida Voter Registration Data from early 2022.\nThe data is available here - `Florida voter registration database <http://dx.doi.org/10.7910/DVN/UBIG3F>`__\n\n\nAuthors\n-------\n\nRajashekar Chintalapati and Gaurav Sood\n\nContributing\n------------\n\nContributions are welcome. Please open an issue if you find a bug or have a feature request.\n\nLicense\n-------\n\nThe package is released under the `MIT License <https://opensource.org/licenses/MIT>`_.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Generative model for names.",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/appeler/naamkaran"
},
"split_keywords": [
"generate",
"names"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b2014a08aa1127489a97dfa4a2a39446a2ff242dc1abad4e566beeea5a2acaad",
"md5": "5c479ecd7bbb7b1603f1ea666540c7d6",
"sha256": "8f929b4a9753670ce7c1547a30ed5879490ecc31392e7e0bc3f33cbc523adc7c"
},
"downloads": -1,
"filename": "naamkaran-0.0.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "5c479ecd7bbb7b1603f1ea666540c7d6",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 594990,
"upload_time": "2023-08-30T02:00:33",
"upload_time_iso_8601": "2023-08-30T02:00:33.666422Z",
"url": "https://files.pythonhosted.org/packages/b2/01/4a08aa1127489a97dfa4a2a39446a2ff242dc1abad4e566beeea5a2acaad/naamkaran-0.0.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f6685605c890f3c9d67e444e25d5510668ddbba8dfa289c19b74b85c91182485",
"md5": "fe1a1369bf7eb47450a81aff7fd44aa0",
"sha256": "23384dd2f6fb2a66fe5f0e5848106026a986a1bcd8310c6907b7f7d85d694c15"
},
"downloads": -1,
"filename": "naamkaran-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "fe1a1369bf7eb47450a81aff7fd44aa0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 595110,
"upload_time": "2023-08-30T02:00:36",
"upload_time_iso_8601": "2023-08-30T02:00:36.051166Z",
"url": "https://files.pythonhosted.org/packages/f6/68/5605c890f3c9d67e444e25d5510668ddbba8dfa289c19b74b85c91182485/naamkaran-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-30 02:00:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "appeler",
"github_project": "naamkaran",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "naamkaran"
}