naamkaran: generative model for names
-------------------------------------
.. image:: https://github.com/appeler/naamkaran/actions/workflows/ci.yml/badge.svg
:target: https://github.com/appeler/naamkaran/actions/workflows/ci.yml
.. image:: https://img.shields.io/pypi/v/naamkaran.svg
:target: https://pypi.python.org/pypi/naamkaran
.. image:: https://static.pepy.tech/badge/naamkaran
:target: https://pepy.tech/project/naamkaran
.. image:: https://img.shields.io/badge/docs-github.io-blue
:target: https://appeler.github.io/naamkaran/
Naamkaran is a generative model for names. It is based on a character-level RNN trained on names from the Florida Voter Registration Data.
Gradio App.
------------
`Naamkaran on HF <https://huggingface.co/spaces/sixtyfold/generate_names>`__
Installation
------------
Naamkaran can be installed from PyPI using pip:
.. code-block:: bash
pip install naamkaran
For development with all tools:
.. code-block:: bash
pip install -e ".[dev,test]"
For web applications (Gradio/Flask):
.. code-block:: bash
pip install "naamkaran[web]"
General API
-----------
The general API for naamkaran is as follows:
::
# naamkaran is the package name
from naamkaran.generate import generate_names
# generate_names is the function that generates names
positional arguments:
start_letter The letter to start the name with (default: "a")
optional arguments:
end_letter The letter to end the name with (default: None)
how_many The number of names to generate (default: 1)
max_length The maximum length of the name (default: 5)
gender The gender of the name (default: "M")
temperature The temperature of the model (default: 0.5)
# generate 10 names starting with 'A'
generate_names('A', how_many=10)
['Allis', 'Alber', 'Aderi', 'Albri', 'Alawa',
'Arver', 'Agnee', 'Anous', 'Areyd', 'Adria']
# generate 10 names starting with 'B' and ending with 'n'
generate_names('B', end_letter='n', how_many=10)
['Brian', 'Beran', 'Burin', 'Bahan', 'Balin',
'Bounn', 'Baran', 'Balan', 'Belin', 'Brion']
# generate 5 names starting with 'B' and ending with 'n' with a maximum length of 4
generate_names('B', end_letter='n', how_many=5, max_length=4)
['Bern', 'Bren', 'Bran', 'Bonn', 'Brun']
# generate 10 names starting with 'D' and ending with 'd' with a maximum length of 6
# and a temperature of 0.5
generate_names('D', end_letter='d', how_many=5, max_length=6, temperature=0.5)
['Derayd', 'Davind', 'Deland', 'Denild', 'David']
# generate 10 female names starting with 'A' and ending with 'e' with a maximum length of 5
# and a temperature of 0.5
generate_names('A', end_letter='e', how_many=10, max_length=5, gender="F", temperature=0.5)
['Annhe', 'Annie', 'Altre', 'Anne', 'Ashle',
'Arine', 'Anice', 'Andre', 'Anale', 'Allie']
Data
----
The model is trained on names from the Florida Voter Registration Data from early 2022.
The data are available on the `Harvard Dataverse <http://dx.doi.org/10.7910/DVN/UBIG3F>`__
Authors
-------
Rajashekar Chintalapati and Gaurav Sood
Contributing
------------
Contributions are welcome. Please open an issue if you find a bug or have a feature request.
License
-------
The package is released under the `MIT License <https://opensource.org/licenses/MIT>`_.
Raw data
{
"_id": null,
"home_page": null,
"name": "naamkaran",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "generate, names, machine-learning, nlp",
"author": null,
"author_email": "Rajashekar Chintalapati <rajshekar.ch@gmail.com>, Gaurav Sood <gsood07@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/8e/0c/efcad5a806a596a354243498a552f2bc6caa0c178ba565c1530e0fdc04cd/naamkaran-0.2.0.tar.gz",
"platform": null,
"description": "naamkaran: generative model for names\n-------------------------------------\n\n.. image:: https://github.com/appeler/naamkaran/actions/workflows/ci.yml/badge.svg\n :target: https://github.com/appeler/naamkaran/actions/workflows/ci.yml\n.. image:: https://img.shields.io/pypi/v/naamkaran.svg\n :target: https://pypi.python.org/pypi/naamkaran\n.. image:: https://static.pepy.tech/badge/naamkaran\n :target: https://pepy.tech/project/naamkaran\n.. image:: https://img.shields.io/badge/docs-github.io-blue\n :target: https://appeler.github.io/naamkaran/\n\nNaamkaran is a generative model for names. It is based on a character-level RNN trained on names from the Florida Voter Registration Data.\n\nGradio App.\n------------\n`Naamkaran on HF <https://huggingface.co/spaces/sixtyfold/generate_names>`__\n\nInstallation\n------------\n\nNaamkaran can be installed from PyPI using pip:\n\n.. code-block:: bash\n\n pip install naamkaran\n\nFor development with all tools:\n\n.. code-block:: bash\n\n pip install -e \".[dev,test]\"\n\nFor web applications (Gradio/Flask):\n\n.. code-block:: bash\n\n pip install \"naamkaran[web]\"\n\nGeneral API\n-----------\n\nThe general API for naamkaran is as follows:\n\n::\n\n # naamkaran is the package name\n from naamkaran.generate import generate_names\n\n # generate_names is the function that generates names\n\n positional arguments:\n start_letter The letter to start the name with (default: \"a\")\n\n optional arguments:\n end_letter The letter to end the name with (default: None)\n how_many The number of names to generate (default: 1)\n max_length The maximum length of the name (default: 5)\n gender The gender of the name (default: \"M\")\n temperature The temperature of the model (default: 0.5)\n\n # generate 10 names starting with 'A'\n generate_names('A', how_many=10)\n ['Allis', 'Alber', 'Aderi', 'Albri', 'Alawa',\n 'Arver', 'Agnee', 'Anous', 'Areyd', 'Adria']\n\n\n # generate 10 names starting with 'B' and ending with 'n'\n generate_names('B', end_letter='n', how_many=10)\n ['Brian', 'Beran', 'Burin', 'Bahan', 'Balin',\n 'Bounn', 'Baran', 'Balan', 'Belin', 'Brion']\n\n # generate 5 names starting with 'B' and ending with 'n' with a maximum length of 4\n generate_names('B', end_letter='n', how_many=5, max_length=4)\n ['Bern', 'Bren', 'Bran', 'Bonn', 'Brun']\n\n # generate 10 names starting with 'D' and ending with 'd' with a maximum length of 6\n # and a temperature of 0.5\n generate_names('D', end_letter='d', how_many=5, max_length=6, temperature=0.5)\n ['Derayd', 'Davind', 'Deland', 'Denild', 'David']\n\n # generate 10 female names starting with 'A' and ending with 'e' with a maximum length of 5\n # and a temperature of 0.5\n generate_names('A', end_letter='e', how_many=10, max_length=5, gender=\"F\", temperature=0.5)\n ['Annhe', 'Annie', 'Altre', 'Anne', 'Ashle',\n 'Arine', 'Anice', 'Andre', 'Anale', 'Allie']\n\n\nData\n----\n\nThe model is trained on names from the Florida Voter Registration Data from early 2022.\nThe data are available on the `Harvard Dataverse <http://dx.doi.org/10.7910/DVN/UBIG3F>`__\n\n\nAuthors\n-------\n\nRajashekar Chintalapati and Gaurav Sood\n\nContributing\n------------\n\nContributions are welcome. Please open an issue if you find a bug or have a feature request.\n\nLicense\n-------\n\nThe package is released under the `MIT License <https://opensource.org/licenses/MIT>`_.\n",
"bugtrack_url": null,
"license": null,
"summary": "Generative model for names.",
"version": "0.2.0",
"project_urls": {
"Documentation": "https://appeler.github.io/naamkaran/",
"Homepage": "https://github.com/appeler/naamkaran",
"Issues": "https://github.com/appeler/naamkaran/issues",
"Repository": "https://github.com/appeler/naamkaran"
},
"split_keywords": [
"generate",
" names",
" machine-learning",
" nlp"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f699254286beccbffc843a803059c409f9a20345a22648604415ff34c4125601",
"md5": "5953d9889067adb0d4e40506de24907c",
"sha256": "dcf5b120e22bcadc19157e9d9a7ab5fd1ce68efcf058efaaca03ccb0b4633f09"
},
"downloads": -1,
"filename": "naamkaran-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5953d9889067adb0d4e40506de24907c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 509552,
"upload_time": "2025-10-07T20:46:22",
"upload_time_iso_8601": "2025-10-07T20:46:22.378672Z",
"url": "https://files.pythonhosted.org/packages/f6/99/254286beccbffc843a803059c409f9a20345a22648604415ff34c4125601/naamkaran-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8e0cefcad5a806a596a354243498a552f2bc6caa0c178ba565c1530e0fdc04cd",
"md5": "47f2eab091fe94b39df140f6f2726e9b",
"sha256": "81dbc0e55b7b68644e6cfb6a472d4db3bf8382afe6f0af85ae8675a977f7f065"
},
"downloads": -1,
"filename": "naamkaran-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "47f2eab091fe94b39df140f6f2726e9b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 510978,
"upload_time": "2025-10-07T20:46:24",
"upload_time_iso_8601": "2025-10-07T20:46:24.776461Z",
"url": "https://files.pythonhosted.org/packages/8e/0c/efcad5a806a596a354243498a552f2bc6caa0c178ba565c1530e0fdc04cd/naamkaran-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-07 20:46:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "appeler",
"github_project": "naamkaran",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "naamkaran"
}