nanoget


Namenanoget JSON
Version 1.19.3 PyPI version JSON
download
home_pagehttps://github.com/wdecoster/nanoget
SummaryFunctions to extract information from Oxford Nanopore sequencing data and alignments.
upload_time2023-09-19 20:11:25
maintainer
docs_urlNone
authorWouter De Coster
requires_python>=3
licenseGPLv3
keywords nanopore sequencing plotting quality control
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # nanoget
This module provides functions to extract useful metrics from Oxford Nanopore sequencing reads and alignments.  

[![Twitter URL](https://img.shields.io/twitter/url/https/twitter.com/wouter_decoster.svg?style=social&label=Follow%20%40wouter_decoster)](https://twitter.com/wouter_decoster)
[![install with conda](https://anaconda.org/bioconda/nanoget/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoget)


## FUNCTIONS
Data can be presented in the following formats, using the following functions:  
- A sorted bam file `process_bam(bamfile, threads)`  
- A standard fastq file `process_fastq_plain(fastqfile, 'threads')`  
- A fastq file with metadata from MinKNOW or Albacore `process_fastq_rich(fastqfile)`  
- A sequencing_summary file generated by Albacore `process_summary(sequencing_summary.txt, 'readtype')`  

Fastq files can be compressed using gzip, bzip2 or bgzip. The data is returned as a pandas DataFrame with standardized headernames for convenient extraction. The functions perform logging while being called and extracting data.


## INSTALLATION
```bash
pip install nanoget
```
or  
[![install with conda](https://anaconda.org/bioconda/nanoget/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoget)
```
conda install -c bioconda nanoget
```

Copyright: 2016-2020 Wouter De Coster <decosterwouter@gmail.com>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/wdecoster/nanoget",
    "name": "nanoget",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "nanopore sequencing plotting quality control",
    "author": "Wouter De Coster",
    "author_email": "decosterwouter@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d7/97/a37c6f386979e18fee5e01e8a376067c6231676981c726976e70f096163b/nanoget-1.19.3.tar.gz",
    "platform": null,
    "description": "# nanoget\nThis module provides functions to extract useful metrics from Oxford Nanopore sequencing reads and alignments.  \n\n[![Twitter URL](https://img.shields.io/twitter/url/https/twitter.com/wouter_decoster.svg?style=social&label=Follow%20%40wouter_decoster)](https://twitter.com/wouter_decoster)\n[![install with conda](https://anaconda.org/bioconda/nanoget/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoget)\n\n\n## FUNCTIONS\nData can be presented in the following formats, using the following functions:  \n- A sorted bam file `process_bam(bamfile, threads)`  \n- A standard fastq file `process_fastq_plain(fastqfile, 'threads')`  \n- A fastq file with metadata from MinKNOW or Albacore `process_fastq_rich(fastqfile)`  \n- A sequencing_summary file generated by Albacore `process_summary(sequencing_summary.txt, 'readtype')`  \n\nFastq files can be compressed using gzip, bzip2 or bgzip. The data is returned as a pandas DataFrame with standardized headernames for convenient extraction. The functions perform logging while being called and extracting data.\n\n\n## INSTALLATION\n```bash\npip install nanoget\n```\nor  \n[![install with conda](https://anaconda.org/bioconda/nanoget/badges/installer/conda.svg)](https://anaconda.org/bioconda/nanoget)\n```\nconda install -c bioconda nanoget\n```\n\nCopyright: 2016-2020 Wouter De Coster <decosterwouter@gmail.com>\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Functions to extract information from Oxford Nanopore sequencing data and alignments.",
    "version": "1.19.3",
    "project_urls": {
        "Homepage": "https://github.com/wdecoster/nanoget"
    },
    "split_keywords": [
        "nanopore",
        "sequencing",
        "plotting",
        "quality",
        "control"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d797a37c6f386979e18fee5e01e8a376067c6231676981c726976e70f096163b",
                "md5": "239b4aba095c1e043c479391788cae31",
                "sha256": "da981810edb1cbe42cbbfbe5fcf753f29bf5555204cd51256b28a284a036a71b"
            },
            "downloads": -1,
            "filename": "nanoget-1.19.3.tar.gz",
            "has_sig": false,
            "md5_digest": "239b4aba095c1e043c479391788cae31",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 24430,
            "upload_time": "2023-09-19T20:11:25",
            "upload_time_iso_8601": "2023-09-19T20:11:25.626404Z",
            "url": "https://files.pythonhosted.org/packages/d7/97/a37c6f386979e18fee5e01e8a376067c6231676981c726976e70f096163b/nanoget-1.19.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-19 20:11:25",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "wdecoster",
    "github_project": "nanoget",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nanoget"
}
        
Elapsed time: 0.63385s