# napari-macrokit
[![License BSD-3](https://img.shields.io/pypi/l/napari-macrokit.svg?color=green)](https://github.com/hanjinliu/napari-macrokit/raw/main/LICENSE)
[![PyPI](https://img.shields.io/pypi/v/napari-macrokit.svg?color=green)](https://pypi.org/project/napari-macrokit)
[![Python Version](https://img.shields.io/pypi/pyversions/napari-macrokit.svg?color=green)](https://python.org)
[![tests](https://github.com/hanjinliu/napari-macrokit/workflows/tests/badge.svg)](https://github.com/hanjinliu/napari-macrokit/actions)
[![codecov](https://codecov.io/gh/hanjinliu/napari-macrokit/branch/main/graph/badge.svg)](https://codecov.io/gh/hanjinliu/napari-macrokit)
[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-macrokit)](https://napari-hub.org/plugins/napari-macrokit)
Executable script generation for napari plugins.
![](https://github.com/hanjinliu/napari-macrokit/blob/main/images/example.gif)
↑ [Example](https://github.com/hanjinliu/napari-macrokit/blob/main/examples/regionprops.py) showing the real-time recording of GUI operation.
This napari plugin aims at making image analysis reproducible with arbitrary input/output types.
## Usage
Create a macro object, decorate functions with `record` method and run!
```python
from napari_macrokit import get_macro
macro = get_macro("my-plugin-specifier") # get macro object
# define a function
@macro.record
def add(a: float, b: float) -> float:
return a + b
# run
result = add(3.2, 5.4)
add(result, 1.0)
macro
# Out:
# >>> float0 = add(3.2, 5.4)
# >>> float1 = add(float0, 1.0)
```
## Record GUI Operations
You can use recordable functions in your widgets to keep tracks of GUI operations.
More simply, you can double-decorate functions with `record` and `magicgui`.
```python
import numpy as np
from magicgui import magicgui
import napari
from napari.types import ImageData
from napari_macrokit import get_macro
macro = get_macro("my-plugin-specifier") # get macro object
# define recordable magicgui
@magicgui
@macro.record
def add(image: ImageData, b: float) -> ImageData:
return image + b
viewer = napari.Viewer() # launch a viewer
viewer.add_image(np.random.random((100, 100))) # image data
viewer.window.add_dock_widget(add) # add magicgui to the viewer
```
Running add twice in GUI and you'll find macro updated like below.
```python
macro
# Out
# >>> image0 = add(viewer.layers['Image'].data, 0.06)
# >>> image1 = add(image0, 0.12)
```
## Combining Plugins
Suppose you have two modules that use `napari-macrokit`.
```python
# napari_module_0.py
from napari.types import ImageData
from scipy import ndimage as ndi
from napari_macrokit import get_macro
macro = get_macro("napari-module-0")
@macro.record
def gaussian_filter(image: ImageData, sigma: float) -> ImageData:
return ndi.gaussian_filter(image, sigma=sigma)
@macro.record
def threshold(image: ImageData, value: float) -> ImageData:
return image > value
```
```python
# napari_module_1.py
from napari.types import ImageData
import numpy as np
from napari_macrokit import get_macro
macro = get_macro("napari-module-1")
@macro.record
def estimate_background(image: ImageData) -> float:
return np.percentile(image, 10.0)
```
You can use functions from both modules to build an analysis workflow by collecting existing macro objects with `collect_macro` function. All the recordable actions in the modules will also be recorded to the returned macro object.
```python
import numpy as np
from napari_macrokit import collect_macro
from napari_module_0 import gaussian_filter, threshold
from napari_module_1 import estimate_background
# global_macro will record all the macro available at this point
global_macro = collect_macro()
# start image analysis!
image = np.random.random((100, 100))
out = gaussian_filter(image, 2.0)
thresh = estimate_background(out)
binary = threshold(out, thresh)
macro
# Out
# >>> image0 = gaussian_filter(arr0, 2.0)
# >>> float0 = estimate_background(image0)
# >>> image1 = threshold(image1, float0)
```
---------------------------------
This [napari] plugin was generated with [Cookiecutter] using [@napari]'s [cookiecutter-napari-plugin] template.
## Installation
You can install `napari-macrokit` via [pip]:
pip install napari-macrokit
To install latest development version :
pip install git+https://github.com/hanjinliu/napari-macrokit.git
## Contributing
Contributions are very welcome. Tests can be run with [tox], please ensure
the coverage at least stays the same before you submit a pull request.
## License
Distributed under the terms of the [BSD-3] license,
"napari-macrokit" is free and open source software
## Issues
If you encounter any problems, please [file an issue] along with a detailed description.
[napari]: https://github.com/napari/napari
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[@napari]: https://github.com/napari
[MIT]: http://opensource.org/licenses/MIT
[BSD-3]: http://opensource.org/licenses/BSD-3-Clause
[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt
[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt
[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0
[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt
[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin
[file an issue]: https://github.com/hanjinliu/napari-macrokit/issues
[napari]: https://github.com/napari/napari
[tox]: https://tox.readthedocs.io/en/latest/
[pip]: https://pypi.org/project/pip/
[PyPI]: https://pypi.org/
Raw data
{
"_id": null,
"home_page": "https://github.com/hanjinliu/napari-macrokit",
"name": "napari-macrokit",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "",
"author": "Hanjin Liu",
"author_email": "liuhanjin-sc@g.ecc.u-tokyo.ac.jp",
"download_url": "https://files.pythonhosted.org/packages/9c/42/581a9a5c5fa5260d272e4a33d4fa677705af1ef31f386befc6cb13def2b2/napari-macrokit-0.0.1.tar.gz",
"platform": null,
"description": "# napari-macrokit\n\n[![License BSD-3](https://img.shields.io/pypi/l/napari-macrokit.svg?color=green)](https://github.com/hanjinliu/napari-macrokit/raw/main/LICENSE)\n[![PyPI](https://img.shields.io/pypi/v/napari-macrokit.svg?color=green)](https://pypi.org/project/napari-macrokit)\n[![Python Version](https://img.shields.io/pypi/pyversions/napari-macrokit.svg?color=green)](https://python.org)\n[![tests](https://github.com/hanjinliu/napari-macrokit/workflows/tests/badge.svg)](https://github.com/hanjinliu/napari-macrokit/actions)\n[![codecov](https://codecov.io/gh/hanjinliu/napari-macrokit/branch/main/graph/badge.svg)](https://codecov.io/gh/hanjinliu/napari-macrokit)\n[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-macrokit)](https://napari-hub.org/plugins/napari-macrokit)\n\nExecutable script generation for napari plugins.\n\n![](https://github.com/hanjinliu/napari-macrokit/blob/main/images/example.gif)\n↑ [Example](https://github.com/hanjinliu/napari-macrokit/blob/main/examples/regionprops.py) showing the real-time recording of GUI operation.\n\nThis napari plugin aims at making image analysis reproducible with arbitrary input/output types.\n\n## Usage\n\nCreate a macro object, decorate functions with `record` method and run!\n\n```python\nfrom napari_macrokit import get_macro\n\nmacro = get_macro(\"my-plugin-specifier\") # get macro object\n\n# define a function\n@macro.record\ndef add(a: float, b: float) -> float:\n return a + b\n\n# run\nresult = add(3.2, 5.4)\nadd(result, 1.0)\n\nmacro\n\n# Out:\n# >>> float0 = add(3.2, 5.4)\n# >>> float1 = add(float0, 1.0)\n```\n\n## Record GUI Operations\n\nYou can use recordable functions in your widgets to keep tracks of GUI operations.\nMore simply, you can double-decorate functions with `record` and `magicgui`.\n\n```python\nimport numpy as np\nfrom magicgui import magicgui\nimport napari\nfrom napari.types import ImageData\nfrom napari_macrokit import get_macro\n\nmacro = get_macro(\"my-plugin-specifier\") # get macro object\n\n# define recordable magicgui\n@magicgui\n@macro.record\ndef add(image: ImageData, b: float) -> ImageData:\n return image + b\n\nviewer = napari.Viewer() # launch a viewer\nviewer.add_image(np.random.random((100, 100))) # image data\nviewer.window.add_dock_widget(add) # add magicgui to the viewer\n```\n\nRunning add twice in GUI and you'll find macro updated like below.\n\n```python\nmacro\n# Out\n# >>> image0 = add(viewer.layers['Image'].data, 0.06)\n# >>> image1 = add(image0, 0.12)\n```\n\n## Combining Plugins\n\nSuppose you have two modules that use `napari-macrokit`.\n\n```python\n# napari_module_0.py\n\nfrom napari.types import ImageData\nfrom scipy import ndimage as ndi\nfrom napari_macrokit import get_macro\n\nmacro = get_macro(\"napari-module-0\")\n\n@macro.record\ndef gaussian_filter(image: ImageData, sigma: float) -> ImageData:\n return ndi.gaussian_filter(image, sigma=sigma)\n\n@macro.record\ndef threshold(image: ImageData, value: float) -> ImageData:\n return image > value\n```\n\n```python\n# napari_module_1.py\n\nfrom napari.types import ImageData\nimport numpy as np\nfrom napari_macrokit import get_macro\nmacro = get_macro(\"napari-module-1\")\n\n@macro.record\ndef estimate_background(image: ImageData) -> float:\n return np.percentile(image, 10.0)\n\n```\n\nYou can use functions from both modules to build an analysis workflow by collecting existing macro objects with `collect_macro` function. All the recordable actions in the modules will also be recorded to the returned macro object.\n\n```python\nimport numpy as np\nfrom napari_macrokit import collect_macro\nfrom napari_module_0 import gaussian_filter, threshold\nfrom napari_module_1 import estimate_background\n\n# global_macro will record all the macro available at this point\nglobal_macro = collect_macro()\n\n# start image analysis!\nimage = np.random.random((100, 100))\n\nout = gaussian_filter(image, 2.0)\nthresh = estimate_background(out)\nbinary = threshold(out, thresh)\n\nmacro\n# Out\n# >>> image0 = gaussian_filter(arr0, 2.0)\n# >>> float0 = estimate_background(image0)\n# >>> image1 = threshold(image1, float0)\n```\n\n---------------------------------\n\nThis [napari] plugin was generated with [Cookiecutter] using [@napari]'s [cookiecutter-napari-plugin] template.\n\n## Installation\n\nYou can install `napari-macrokit` via [pip]:\n\n pip install napari-macrokit\n\n\n\nTo install latest development version :\n\n pip install git+https://github.com/hanjinliu/napari-macrokit.git\n\n\n## Contributing\n\nContributions are very welcome. Tests can be run with [tox], please ensure\nthe coverage at least stays the same before you submit a pull request.\n\n## License\n\nDistributed under the terms of the [BSD-3] license,\n\"napari-macrokit\" is free and open source software\n\n## Issues\n\nIf you encounter any problems, please [file an issue] along with a detailed description.\n\n[napari]: https://github.com/napari/napari\n[Cookiecutter]: https://github.com/audreyr/cookiecutter\n[@napari]: https://github.com/napari\n[MIT]: http://opensource.org/licenses/MIT\n[BSD-3]: http://opensource.org/licenses/BSD-3-Clause\n[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt\n[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt\n[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0\n[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt\n[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin\n\n[file an issue]: https://github.com/hanjinliu/napari-macrokit/issues\n\n[napari]: https://github.com/napari/napari\n[tox]: https://tox.readthedocs.io/en/latest/\n[pip]: https://pypi.org/project/pip/\n[PyPI]: https://pypi.org/\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Executable script generation for napari plugins",
"version": "0.0.1",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "31d4210013297eb67d1b3dabf2f3c835b683a5b553d7e39d15f057fcb12964db",
"md5": "93b5cad6cfca302eb6fe407b6b846a69",
"sha256": "8d878d54bf4c544466b27a49e7356c693f466953dd5507bb9ea0d31b51323e64"
},
"downloads": -1,
"filename": "napari_macrokit-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "93b5cad6cfca302eb6fe407b6b846a69",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 25834,
"upload_time": "2023-01-27T12:24:15",
"upload_time_iso_8601": "2023-01-27T12:24:15.215078Z",
"url": "https://files.pythonhosted.org/packages/31/d4/210013297eb67d1b3dabf2f3c835b683a5b553d7e39d15f057fcb12964db/napari_macrokit-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9c42581a9a5c5fa5260d272e4a33d4fa677705af1ef31f386befc6cb13def2b2",
"md5": "e6a1f71f371a35fe54256acbc88d966c",
"sha256": "9f49f629f22d0088d482b7292415a76205723b4bbac82319cd5e0fd43022b507"
},
"downloads": -1,
"filename": "napari-macrokit-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "e6a1f71f371a35fe54256acbc88d966c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 22969,
"upload_time": "2023-01-27T12:24:17",
"upload_time_iso_8601": "2023-01-27T12:24:17.580783Z",
"url": "https://files.pythonhosted.org/packages/9c/42/581a9a5c5fa5260d272e4a33d4fa677705af1ef31f386befc6cb13def2b2/napari-macrokit-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-27 12:24:17",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "hanjinliu",
"github_project": "napari-macrokit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "napari-macrokit"
}