napari-sam


Namenapari-sam JSON
Version 0.4.13 PyPI version JSON
download
home_pagehttps://github.com/MIC-DKFZ/napari-sam
SummarySegment anything with Meta AI's new SAM model!
upload_time2023-08-02 13:40:46
maintainer
docs_urlNone
authorKarol Gotkowski
requires_python>=3.8
licenseApache-2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Segment Anything Model (SAM) in Napari

[![License Apache Software License 2.0](https://img.shields.io/pypi/l/napari-sam.svg?color=green)](https://github.com/MIC-DKFZ/napari-sam/raw/main/LICENSE)
[![PyPI](https://img.shields.io/pypi/v/napari-sam.svg?color=green)](https://pypi.org/project/napari-sam)
[![Python Version](https://img.shields.io/pypi/pyversions/napari-sam.svg?color=green)](https://python.org)
[![tests](https://github.com/MIC-DKFZ/napari-sam/workflows/tests/badge.svg)](https://github.com/MIC-DKFZ/napari-sam/actions)
[![codecov](https://codecov.io/gh/MIC-DKFZ/napari-sam/branch/main/graph/badge.svg)](https://codecov.io/gh/MIC-DKFZ/napari-sam)
[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-sam)](https://napari-hub.org/plugins/napari-sam)

Segment anything with our **Napari** integration of Meta AI's new **Segment Anything Model (SAM)**!

SAM is the new segmentation system from Meta AI capable of **one-click segmentation of any object**, and now, our plugin neatly integrates this into Napari.

We have already **extended** SAM's click-based foreground separation to full **click-based semantic segmentation and instance segmentation**!

At last, our SAM integration supports both **2D and 3D images**!

----------------------------------

Everything mode             |  Click-based semantic segmentation mode |  Click-based instance segmentation mode
:-------------------------:|:-------------------------:|:-------------------------:
![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_everything.png)  |  ![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_semantic.png)  |  ![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_instance.png)


----------------------------------
<h2 align="center">SAM in Napari demo</h2>
<div align="center">

https://user-images.githubusercontent.com/3471895/236152620-0de983db-954b-4480-97b9-901ee82f8edd.mp4

</div>

----------------------------------

## Installation

The plugin requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions here to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.

Install Napari via [pip]:
    
    pip install napari[all]

You can install `napari-sam` via [pip]:

    pip install git+https://github.com/facebookresearch/segment-anything.git
    pip install napari-sam



To install latest development version :

    pip install git+https://github.com/MIC-DKFZ/napari-sam.git

## Usage

Start Napari from the console with:

    napari

Then navigate to `Plugins -> Segment Anything (napari-sam)` and drag & drop an image into Napari. At last create, a labels layer that will be used for the SAM predictions, by clicking in the layer list on the third button.

You can then auto-download one of the available SAM models (this can take 1-2 minutes),  activate one of the annotations & segmentation modes, and you are ready to go!


## Contributing

Contributions are very welcome. Tests can be run with [tox], please ensure
the coverage at least stays the same before you submit a pull request.

## License

Distributed under the terms of the [Apache Software License 2.0] license,
"napari-sam" is free and open source software

## Issues

If you encounter any problems, please [file an issue] along with a detailed description.

[napari]: https://github.com/napari/napari
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[@napari]: https://github.com/napari
[MIT]: http://opensource.org/licenses/MIT
[BSD-3]: http://opensource.org/licenses/BSD-3-Clause
[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt
[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt
[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0
[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt
[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin

[file an issue]: https://github.com/MIC-DKFZ/napari-sam/issues

[napari]: https://github.com/napari/napari
[tox]: https://tox.readthedocs.io/en/latest/
[pip]: https://pypi.org/project/pip/
[PyPI]: https://pypi.org/

# Acknowledgements
<img src="https://github.com/MIC-DKFZ/napari-sam/raw/main/HI_Logo.png" height="100px" />

<img src="https://github.com/MIC-DKFZ/napari-sam/raw/main/dkfz_logo.png" height="100px" />

napari-sam is developed and maintained by the Applied Computer Vision Lab (ACVL) of [Helmholtz Imaging](http://helmholtz-imaging.de) 
and the [Division of Medical Image Computing](https://www.dkfz.de/en/mic/index.php) at the 
[German Cancer Research Center (DKFZ)](https://www.dkfz.de/en/index.html).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MIC-DKFZ/napari-sam",
    "name": "napari-sam",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "Karol Gotkowski",
    "author_email": "karol.gotkowski@dkfz.de",
    "download_url": "https://files.pythonhosted.org/packages/09/35/77ffc566d173f8f096923f1e4eb8cf09829fac23f225d7e342e47a48402c/napari-sam-0.4.13.tar.gz",
    "platform": null,
    "description": "# Segment Anything Model (SAM) in Napari\n\n[![License Apache Software License 2.0](https://img.shields.io/pypi/l/napari-sam.svg?color=green)](https://github.com/MIC-DKFZ/napari-sam/raw/main/LICENSE)\n[![PyPI](https://img.shields.io/pypi/v/napari-sam.svg?color=green)](https://pypi.org/project/napari-sam)\n[![Python Version](https://img.shields.io/pypi/pyversions/napari-sam.svg?color=green)](https://python.org)\n[![tests](https://github.com/MIC-DKFZ/napari-sam/workflows/tests/badge.svg)](https://github.com/MIC-DKFZ/napari-sam/actions)\n[![codecov](https://codecov.io/gh/MIC-DKFZ/napari-sam/branch/main/graph/badge.svg)](https://codecov.io/gh/MIC-DKFZ/napari-sam)\n[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-sam)](https://napari-hub.org/plugins/napari-sam)\n\nSegment anything with our **Napari** integration of Meta AI's new **Segment Anything Model (SAM)**!\n\nSAM is the new segmentation system from Meta AI capable of **one-click segmentation of any object**, and now, our plugin neatly integrates this into Napari.\n\nWe have already **extended** SAM's click-based foreground separation to full **click-based semantic segmentation and instance segmentation**!\n\nAt last, our SAM integration supports both **2D and 3D images**!\n\n----------------------------------\n\nEverything mode             |  Click-based semantic segmentation mode |  Click-based instance segmentation mode\n:-------------------------:|:-------------------------:|:-------------------------:\n![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_everything.png)  |  ![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_semantic.png)  |  ![](https://github.com/MIC-DKFZ/napari-sam/raw/main/cats_instance.png)\n\n\n----------------------------------\n<h2 align=\"center\">SAM in Napari demo</h2>\n<div align=\"center\">\n\nhttps://user-images.githubusercontent.com/3471895/236152620-0de983db-954b-4480-97b9-901ee82f8edd.mp4\n\n</div>\n\n----------------------------------\n\n## Installation\n\nThe plugin requires `python>=3.8`, as well as `pytorch>=1.7` and `torchvision>=0.8`. Please follow the instructions here to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.\n\nInstall Napari via [pip]:\n    \n    pip install napari[all]\n\nYou can install `napari-sam` via [pip]:\n\n    pip install git+https://github.com/facebookresearch/segment-anything.git\n    pip install napari-sam\n\n\n\nTo install latest development version :\n\n    pip install git+https://github.com/MIC-DKFZ/napari-sam.git\n\n## Usage\n\nStart Napari from the console with:\n\n    napari\n\nThen navigate to `Plugins -> Segment Anything (napari-sam)` and drag & drop an image into Napari. At last create, a labels layer that will be used for the SAM predictions, by clicking in the layer list on the third button.\n\nYou can then auto-download one of the available SAM models (this can take 1-2 minutes),  activate one of the annotations & segmentation modes, and you are ready to go!\n\n\n## Contributing\n\nContributions are very welcome. Tests can be run with [tox], please ensure\nthe coverage at least stays the same before you submit a pull request.\n\n## License\n\nDistributed under the terms of the [Apache Software License 2.0] license,\n\"napari-sam\" is free and open source software\n\n## Issues\n\nIf you encounter any problems, please [file an issue] along with a detailed description.\n\n[napari]: https://github.com/napari/napari\n[Cookiecutter]: https://github.com/audreyr/cookiecutter\n[@napari]: https://github.com/napari\n[MIT]: http://opensource.org/licenses/MIT\n[BSD-3]: http://opensource.org/licenses/BSD-3-Clause\n[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt\n[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt\n[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0\n[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt\n[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin\n\n[file an issue]: https://github.com/MIC-DKFZ/napari-sam/issues\n\n[napari]: https://github.com/napari/napari\n[tox]: https://tox.readthedocs.io/en/latest/\n[pip]: https://pypi.org/project/pip/\n[PyPI]: https://pypi.org/\n\n# Acknowledgements\n<img src=\"https://github.com/MIC-DKFZ/napari-sam/raw/main/HI_Logo.png\" height=\"100px\" />\n\n<img src=\"https://github.com/MIC-DKFZ/napari-sam/raw/main/dkfz_logo.png\" height=\"100px\" />\n\nnapari-sam is developed and maintained by the Applied Computer Vision Lab (ACVL) of [Helmholtz Imaging](http://helmholtz-imaging.de) \nand the [Division of Medical Image Computing](https://www.dkfz.de/en/mic/index.php) at the \n[German Cancer Research Center (DKFZ)](https://www.dkfz.de/en/index.html).\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Segment anything with Meta AI's new SAM model!",
    "version": "0.4.13",
    "project_urls": {
        "Bug Tracker": "https://github.com/MIC-DKFZ/napari-sam/issues",
        "Documentation": "https://github.com/MIC-DKFZ/napari-sam#README.md",
        "Homepage": "https://github.com/MIC-DKFZ/napari-sam",
        "Source Code": "https://github.com/MIC-DKFZ/napari-sam",
        "User Support": "https://github.com/MIC-DKFZ/napari-sam/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "da963f41c2bf61ff70f3290dd4c2c4efc47a3fa6c4118c2b31ad235c930b41c4",
                "md5": "884082f9fdf7c1b6bad14e4026d38a1b",
                "sha256": "8c81227a55192f70f4c038f18ca46a520c078a615f9066f425b0f05a54ce2a88"
            },
            "downloads": -1,
            "filename": "napari_sam-0.4.13-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "884082f9fdf7c1b6bad14e4026d38a1b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 22951,
            "upload_time": "2023-08-02T13:40:44",
            "upload_time_iso_8601": "2023-08-02T13:40:44.541679Z",
            "url": "https://files.pythonhosted.org/packages/da/96/3f41c2bf61ff70f3290dd4c2c4efc47a3fa6c4118c2b31ad235c930b41c4/napari_sam-0.4.13-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "093577ffc566d173f8f096923f1e4eb8cf09829fac23f225d7e342e47a48402c",
                "md5": "e43bdbc51b5a600b5f5db1e6b5d3f3a9",
                "sha256": "f1f6fe177e45a217a3fd10e3a66c2f641560b9b14e940cd00d2fbebc9f65ce5f"
            },
            "downloads": -1,
            "filename": "napari-sam-0.4.13.tar.gz",
            "has_sig": false,
            "md5_digest": "e43bdbc51b5a600b5f5db1e6b5d3f3a9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 23800,
            "upload_time": "2023-08-02T13:40:46",
            "upload_time_iso_8601": "2023-08-02T13:40:46.234314Z",
            "url": "https://files.pythonhosted.org/packages/09/35/77ffc566d173f8f096923f1e4eb8cf09829fac23f225d7e342e47a48402c/napari-sam-0.4.13.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-02 13:40:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MIC-DKFZ",
    "github_project": "napari-sam",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "napari-sam"
}
        
Elapsed time: 0.31356s