[![DOI](https://zenodo.org/badge/124706809.svg)](https://zenodo.org/badge/latestdoi/124706809)
# PyMMS
## Installation
For development purposes, install the package using
```bash
$ python3 setup.py develop --user
```
This installation will reflect any changes made in the pymms development directory without the need to reinstall the package every single time.
## Scripts
### gls
The `pymms.gls` package includes two user-runnable console commands: `gls-mp` and `gls-mp-data`. Calling `gls-mp` runs the `mp-dl-unh` model to generate predicted SITL selections over a date range.
```
$ gls-mp -h
usage: gls-mp [-h] [-g] [-t] [-c C] [-temp] start end sc
positional arguments:
start Start date of data interval, formatted as either '%Y-%m-%d'
or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted
as an orbit number.
end Start date of data interval, formatted as either '%Y-%m-%d'
or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted
as an orbit number.
sc Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')
optional arguments:
-h, --help show this help message and exit
-g, -gpu Enables use of GPU-accelerated model for faster
predictions. Requires CUDA installed.
-t, -test Runs a test routine on the model.
-c C, -chunks C Break up the processing of the date interval in C chunks.
-temp If running the job in chunks, deletes the contents of the
MMS root data folder after each chunk.
```
Calling `gls-mp-data` generates a CSV file containing data formatted and preprocessed for `gls-mp`. This can be used when training your own version of mp-dl-unh.
```
$ gls-mp-data -h
usage: gls-mp-data [-h] [-is] [-ip] [-v] sc level start end output
positional arguments:
sc Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')
level Data quality level ('l1a', 'l1b', 'sitl', 'l2pre',
'l2', 'l3')
start Start date of data interval, formatted as either
'%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an
integer, interpreted as an orbit number.
end Start date of data interval, formatted as either
'%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an
integer, interpreted as an orbit number.
output Path the output CSV file, including the CSV file's
name.
optional arguments:
-h, --help show this help message and exit
-is, --include-selections
Includes SITL selections in the output data.
-ip, --include-partials
Includes partial magnetopause crossings in SITL
selections.
-v, --verbose If true, prints out optional information about
downloaded variables.
```
If PyMMS is installed with the ``--user`` flag and PyMMS is used from a unix system, you must call:
```bash
$ export PATH=~/.local/bin$PATH
$ source ~/.bash_profile
```
before calling `gls-mp` or `gls-mp-data`.
## Citation
If you make use of this software to analyze MMS use or data, please consider citing the software. Follow the Zenodo DOI at the top for a citation to the most recent release, or head to [Zenodo](https://doi.org/10.5281/zenodo.3765993) to see the citations/DOIs of other releases.
Raw data
{
"_id": null,
"home_page": "https://github.com/argallmr/pymms",
"name": "nasa-pymms",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "physics space-physics MMS",
"author": "Matthew R. Argall",
"author_email": "argallmr@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/49/6f/2e260d19f9722207fa97cd8cc092a86636ff66e60e25570d268106462f42/nasa-pymms-0.4.8.tar.gz",
"platform": null,
"description": "[![DOI](https://zenodo.org/badge/124706809.svg)](https://zenodo.org/badge/latestdoi/124706809)\n\n# PyMMS\n\n## Installation\n\nFor development purposes, install the package using\n```bash\n$ python3 setup.py develop --user\n```\nThis installation will reflect any changes made in the pymms development directory without the need to reinstall the package every single time.\n\n## Scripts\n\n### gls\n\nThe `pymms.gls` package includes two user-runnable console commands: `gls-mp` and `gls-mp-data`. Calling `gls-mp` runs the `mp-dl-unh` model to generate predicted SITL selections over a date range.\n\n```\n$ gls-mp -h\nusage: gls-mp [-h] [-g] [-t] [-c C] [-temp] start end sc\n\npositional arguments:\n start Start date of data interval, formatted as either '%Y-%m-%d'\n or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted\n as an orbit number.\n end Start date of data interval, formatted as either '%Y-%m-%d'\n or '%Y-%m-%dT%H:%M:%S'. Optionally an integer, interpreted\n as an orbit number.\n sc Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')\n\noptional arguments:\n -h, --help show this help message and exit\n -g, -gpu Enables use of GPU-accelerated model for faster\n predictions. Requires CUDA installed.\n -t, -test Runs a test routine on the model.\n -c C, -chunks C Break up the processing of the date interval in C chunks.\n -temp If running the job in chunks, deletes the contents of the\n MMS root data folder after each chunk.\n```\n\nCalling `gls-mp-data` generates a CSV file containing data formatted and preprocessed for `gls-mp`. This can be used when training your own version of mp-dl-unh.\n\n```\n$ gls-mp-data -h\nusage: gls-mp-data [-h] [-is] [-ip] [-v] sc level start end output\n\npositional arguments:\n sc Spacecraft IDs ('mms1', 'mms2', 'mms3', 'mms4')\n level Data quality level ('l1a', 'l1b', 'sitl', 'l2pre',\n 'l2', 'l3')\n start Start date of data interval, formatted as either\n '%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an\n integer, interpreted as an orbit number.\n end Start date of data interval, formatted as either\n '%Y-%m-%d' or '%Y-%m-%dT%H:%M:%S'. Optionally an\n integer, interpreted as an orbit number.\n output Path the output CSV file, including the CSV file's\n name.\n\noptional arguments:\n -h, --help show this help message and exit\n -is, --include-selections\n Includes SITL selections in the output data.\n -ip, --include-partials\n Includes partial magnetopause crossings in SITL\n selections.\n -v, --verbose If true, prints out optional information about\n downloaded variables.\n```\n\nIf PyMMS is installed with the ``--user`` flag and PyMMS is used from a unix system, you must call:\n```bash\n$ export PATH=~/.local/bin$PATH\n$ source ~/.bash_profile\n```\nbefore calling `gls-mp` or `gls-mp-data`.\n\n## Citation\n\nIf you make use of this software to analyze MMS use or data, please consider citing the software. Follow the Zenodo DOI at the top for a citation to the most recent release, or head to [Zenodo](https://doi.org/10.5281/zenodo.3765993) to see the citations/DOIs of other releases.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Access data from the MMS mission via its API.",
"version": "0.4.8",
"project_urls": {
"Homepage": "https://github.com/argallmr/pymms"
},
"split_keywords": [
"physics",
"space-physics",
"mms"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "14f6e3f76e49910dce56e54b9cb79505bf7970b698c5d8f7e15044a3568cda8f",
"md5": "9716b837eb1b9d358d641a1977c4e19b",
"sha256": "94f1638c1e115351851033722848b356b6984b81ff8f1c56bd372bdb5e75f2de"
},
"downloads": -1,
"filename": "nasa_pymms-0.4.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9716b837eb1b9d358d641a1977c4e19b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 137674,
"upload_time": "2024-06-13T19:42:48",
"upload_time_iso_8601": "2024-06-13T19:42:48.357130Z",
"url": "https://files.pythonhosted.org/packages/14/f6/e3f76e49910dce56e54b9cb79505bf7970b698c5d8f7e15044a3568cda8f/nasa_pymms-0.4.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "496f2e260d19f9722207fa97cd8cc092a86636ff66e60e25570d268106462f42",
"md5": "f9f818340ec78e1bf9a989a274e87ee1",
"sha256": "c4c701e3bfb269e31fc5e2e963bbb71864738484c0e606f0ebf9a5b63f471672"
},
"downloads": -1,
"filename": "nasa-pymms-0.4.8.tar.gz",
"has_sig": false,
"md5_digest": "f9f818340ec78e1bf9a989a274e87ee1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 112225,
"upload_time": "2024-06-13T19:42:50",
"upload_time_iso_8601": "2024-06-13T19:42:50.411998Z",
"url": "https://files.pythonhosted.org/packages/49/6f/2e260d19f9722207fa97cd8cc092a86636ff66e60e25570d268106462f42/nasa-pymms-0.4.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-13 19:42:50",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "argallmr",
"github_project": "pymms",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "nasa-pymms"
}