natural-selection


Namenatural-selection JSON
Version 0.2.30 PyPI version JSON
download
home_page
SummaryTools for running evolutionary algorithm experiments
upload_time2023-01-25 00:21:09
maintainer
docs_urlNone
authorZipfian Science
requires_python
licenseApache 2.0
keywords genetic algorithms evolutionary algorithms
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Natural Selection
```
      ,(*                                         
           @@                                     
*@       @@% *@                                   
*@     @@   %@ @                                  
 @@/ @@   @@   @@                                 
   @@@(,@(   @/ @@@@@@@&@@@@@                     
                 @ @&  @@  /@@@#                  
                 /@  @@  ,@@   @@                 
                  ,@@   @@   @@  @                
                    %@@@   @@    @@@@@@@@@@@@@    
                          ,,      @  @@  @@  &@@@ 
                                  %@@  @@  &@@  @@
                                   @%@@  &@@     @
                                    ,@,%@@        
                                       @@@@@@     
             _                   _ 
 _ __   __ _| |_ _   _ _ __ __ _| |
| '_ \ / _` | __| | | | '__/ _` | |
| | | | (_| | |_| |_| | | | (_| | |
|_| |_|\__,_|\__|\__,_|_|  \__,_|_|                                   
          _           _   _             
 ___  ___| | ___  ___| |_(_) ___  _ __  
/ __|/ _ \ |/ _ \/ __| __| |/ _ \| '_ \ 
\__ \  __/ |  __/ (__| |_| | (_) | | | |
|___/\___|_|\___|\___|\__|_|\___/|_| |_|
                                        
by Zipfian Science                               
```
Python tools for creating and running Evolutionary Algorithm (EA) experiments by [Zipfian Science](https://zipfian.science/).

* For documentation, see [docs](https://docs.zipfian.science/natural-selection/index.html).
* Source on [GitHub](https://github.com/Zipfian-Science/natural-selection).
* For history, see [changelog](https://docs.zipfian.science/natural-selection/changelog.html#changelog-page)
## Install

```shell script
$ pip install natural-selection
```

## And use

```python
from natural_selection.genetic_algorithms import Gene, Chromosome, Individual, Island
from natural_selection.genetic_algorithms.utils.random_functions import random_int, random_gaussian

# Create a gene
g_1 = Gene(name="test_int", value=3, gene_max=10, gene_min=1, randomise_function=random_int)
g_2 = Gene(name="test_real", value=0.5, gene_max=1.0, gene_min=0.1, randomise_function=random_gaussian)

# Add a list of genes to a genome
gen = Chromosome([g_1, g_2])

# Next, create an individual to carry these genes and evaluate them
fitness_function = lambda island, individual, x, y: individual.chromosome[0].value * x + individual.chromosome[0].value * y
adam = Individual(fitness_function, name="Adam", chromosome=gen)

# Now we can create an island for running the evolutionary process
# Notice the fitness function parameters are given here.
params = dict()
params['x'] = 0.5
params['y'] = 0.2
isolated_island = Island(function_params=params)

# Using a single individual, we can create a new population
isolated_island.initialise(adam, population_size=5)

# And finally, we let the randomness of life do its thing: optimise
best_individual = isolated_island.evolve(n_generations=5)

# After running for a few generations, we have an individual with the highest fitness
fitness = best_individual.fitness
genes = best_individual.chromosome

for gene in genes:
  print(gene.name, gene.value)
```

## Release

- Date: 2023-01-25
- Version: 0.2.30
            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "natural-selection",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "GENETIC ALGORITHMS,EVOLUTIONARY ALGORITHMS",
    "author": "Zipfian Science",
    "author_email": "about@zipfian.science",
    "download_url": "https://files.pythonhosted.org/packages/a4/6d/d209f9985acd0377b8f74f6cfd4ab5039dcf2a974c0f4d4eb3fb73225884/natural_selection-0.2.30.tar.gz",
    "platform": null,
    "description": "# Natural Selection\n```\n      ,(*                                         \n           @@                                     \n*@       @@% *@                                   \n*@     @@   %@ @                                  \n @@/ @@   @@   @@                                 \n   @@@(,@(   @/ @@@@@@@&@@@@@                     \n                 @ @&  @@  /@@@#                  \n                 /@  @@  ,@@   @@                 \n                  ,@@   @@   @@  @                \n                    %@@@   @@    @@@@@@@@@@@@@    \n                          ,,      @  @@  @@  &@@@ \n                                  %@@  @@  &@@  @@\n                                   @%@@  &@@     @\n                                    ,@,%@@        \n                                       @@@@@@     \n             _                   _ \n _ __   __ _| |_ _   _ _ __ __ _| |\n| '_ \\ / _` | __| | | | '__/ _` | |\n| | | | (_| | |_| |_| | | | (_| | |\n|_| |_|\\__,_|\\__|\\__,_|_|  \\__,_|_|                                   \n          _           _   _             \n ___  ___| | ___  ___| |_(_) ___  _ __  \n/ __|/ _ \\ |/ _ \\/ __| __| |/ _ \\| '_ \\ \n\\__ \\  __/ |  __/ (__| |_| | (_) | | | |\n|___/\\___|_|\\___|\\___|\\__|_|\\___/|_| |_|\n                                        \nby Zipfian Science                               \n```\nPython tools for creating and running Evolutionary Algorithm (EA) experiments by [Zipfian Science](https://zipfian.science/).\n\n* For documentation, see [docs](https://docs.zipfian.science/natural-selection/index.html).\n* Source on [GitHub](https://github.com/Zipfian-Science/natural-selection).\n* For history, see [changelog](https://docs.zipfian.science/natural-selection/changelog.html#changelog-page)\n## Install\n\n```shell script\n$ pip install natural-selection\n```\n\n## And use\n\n```python\nfrom natural_selection.genetic_algorithms import Gene, Chromosome, Individual, Island\nfrom natural_selection.genetic_algorithms.utils.random_functions import random_int, random_gaussian\n\n# Create a gene\ng_1 = Gene(name=\"test_int\", value=3, gene_max=10, gene_min=1, randomise_function=random_int)\ng_2 = Gene(name=\"test_real\", value=0.5, gene_max=1.0, gene_min=0.1, randomise_function=random_gaussian)\n\n# Add a list of genes to a genome\ngen = Chromosome([g_1, g_2])\n\n# Next, create an individual to carry these genes and evaluate them\nfitness_function = lambda island, individual, x, y: individual.chromosome[0].value * x + individual.chromosome[0].value * y\nadam = Individual(fitness_function, name=\"Adam\", chromosome=gen)\n\n# Now we can create an island for running the evolutionary process\n# Notice the fitness function parameters are given here.\nparams = dict()\nparams['x'] = 0.5\nparams['y'] = 0.2\nisolated_island = Island(function_params=params)\n\n# Using a single individual, we can create a new population\nisolated_island.initialise(adam, population_size=5)\n\n# And finally, we let the randomness of life do its thing: optimise\nbest_individual = isolated_island.evolve(n_generations=5)\n\n# After running for a few generations, we have an individual with the highest fitness\nfitness = best_individual.fitness\ngenes = best_individual.chromosome\n\nfor gene in genes:\n  print(gene.name, gene.value)\n```\n\n## Release\n\n- Date: 2023-01-25\n- Version: 0.2.30",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Tools for running evolutionary algorithm experiments",
    "version": "0.2.30",
    "split_keywords": [
        "genetic algorithms",
        "evolutionary algorithms"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a46dd209f9985acd0377b8f74f6cfd4ab5039dcf2a974c0f4d4eb3fb73225884",
                "md5": "61f330b2c18cef4f3ad5d999bd7ffd6a",
                "sha256": "3ff7e55774d481685d9fafeb68aab985473a38294c3996072397950e66861235"
            },
            "downloads": -1,
            "filename": "natural_selection-0.2.30.tar.gz",
            "has_sig": false,
            "md5_digest": "61f330b2c18cef4f3ad5d999bd7ffd6a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 40780,
            "upload_time": "2023-01-25T00:21:09",
            "upload_time_iso_8601": "2023-01-25T00:21:09.241962Z",
            "url": "https://files.pythonhosted.org/packages/a4/6d/d209f9985acd0377b8f74f6cfd4ab5039dcf2a974c0f4d4eb3fb73225884/natural_selection-0.2.30.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-25 00:21:09",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "natural-selection"
}
        
Elapsed time: 0.08493s