nbis-py


Namenbis-py JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs
SummaryPython bindings for NBIS fingerprint processing using Rust + UniFFI
upload_time2025-07-15 19:24:36
maintainerNone
docs_urlNone
authorVarun Chatterji <varun@seventhsense.ai>
requires_python>=3.7
licenseMIT
keywords fingerprint nbis biometrics rust uniffi
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ## NBIS-rs

[![CI](https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs/actions/workflows/ci.yaml/badge.svg)](https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs/actions/workflows/ci.yaml)

This is a Rust/Python binding to the NIST Biometric Image Software (NBIS) library, which is used for processing biometric images, particularly in the context of fingerprint recognition.

## Features

- Bindings to NBIS functions for minutia extraction, and matching
- Exports minutiae templates in ISO/IEC 19794-2:2005 format
- Matches minutiae templates against each other using the NBIS Bozorth3 algorithm

## Installation (Rust)

To use NBIS-rs, add the following to your `Cargo.toml`:

```toml
[dependencies]
nbis = "0.1.2"
```

## Usage (Rust)

Here's a simple example of how to use NBIS-rs in your project:

```rust
fn main() -> Result<(), Box<dyn std::error::Error>> {
    use nbis;
    use nbis::Minutiae;

    // Read the bytes from a file (you could also use nbis::extract_minutiae_from_image_file)
    // but here we just load the image bytes as image paths on mobile platforms can be tricky.
    let image_bytes = std::fs::read("test_data/p1/p1_1.png")?;
    let minutiae_1 = nbis::extract_minutiae(&image_bytes, None)?;

    let image_bytes = std::fs::read("test_data/p1/p1_2.png")?;
    let minutiae_2 = nbis::extract_minutiae(&image_bytes, None)?;

    let image_bytes = std::fs::read("test_data/p1/p1_3.png")?;
    let minutiae_3 = nbis::extract_minutiae(&image_bytes, None)?;

    // Compare the two sets of minutiae
    let score = minutiae_1.compare(&minutiae_2);
    assert!(score > 50, "Expected a high similarity score between p1_1 and p1_2");
    let score = minutiae_1.compare(&minutiae_3);
    assert!(score > 50, "Expected a high similarity score between p1_1 and p1_3");
    let score = minutiae_2.compare(&minutiae_3);
    assert!(score > 50, "Expected a high similarity score between p1_2 and p1_3");

    // Next we will demonstrate conversion to ISO/IEC 19794-2:2005 format
    // and back to a `Minutiae` object.
    // First, convert the minutiae to ISO template bytes
    let iso_template: Vec<u8> = minutiae_1.to_iso_19794_2_2005();
    // And load it back
    let minutiae_from_iso = nbis::load_iso_19794_2_2005(&iso_template)?;
    // Compare the original minutiae with the one loaded from ISO template
    for (a, b) in minutiae_from_iso.get().iter().zip(minutiae_1.get().iter()) {
        assert_eq!(a.x(), b.x());
        assert_eq!(a.y(), b.y());
        assert_eq!(a.angle(), b.angle());
        assert_eq!(a.kind(), b.kind());
        // Reliability is quantized in the round-trip conversion,
        // so we allow a small margin of error.
        assert!((a.reliability() - b.reliability()).abs() < 1e-1);
    }

    // Finally we demonstrate loading from a file and comparing a negative match
    let minutiae_4 = nbis::extract_minutiae_from_image_file("test_data/p2/p2_1.png", None)?;
    let score = minutiae_1.compare(&minutiae_4);
    assert!(score < 50, "Expected a low similarity score between p1_1 and p2_1");

    Ok(())
}
```

## Installation (Python)
To install the Python bindings, you can use pip:

```bash
pip install nbis-py
```

## Usage (Python)

Here's a simple example of how to use the NBIS Python bindings:

```python
import nbis

# Read the bytes from a file
image_bytes = open("test_data/p1/p1_1.png", "rb").read()
minutiae_1 = nbis.extract_minutiae(image=image_bytes, ppi=None)
image_bytes = open("test_data/p1/p1_2.png", "rb").read()
minutiae_2 = nbis.extract_minutiae(image=image_bytes, ppi=None)
image_bytes = open("test_data/p1/p1_3.png", "rb").read()
minutiae_3 = nbis.extract_minutiae(image=image_bytes, ppi=None)

# Compare the two sets of minutiae
score = minutiae_1.compare(minutiae_2)
assert score > 50, "Expected a high similarity score between p1_1 and p1_2"
score = minutiae_1.compare(minutiae_3)
assert score > 50, "Expected a high similarity score between p1_1 and p1_3"
score = minutiae_2.compare(minutiae_3)
assert score > 50, "Expected a high similarity score between p1_2 and p1_3"

# Convert minutiae to ISO/IEC 19794-2:2005 format
iso_template = minutiae_1.to_iso_19794_2_2005()
# Load it back
minutiae_from_iso = nbis.load_iso_19794_2_2005(iso_template)
# Compare the original minutiae with the one loaded from ISO template
for a, b in zip(minutiae_from_iso.get(), minutiae_1.get()):
    assert a.x() == b.x()
    assert a.y() == b.y()
    assert a.angle() == b.angle()
    assert a.kind() == b.kind()
    # Reliability is quantized in the round-trip conversion,
    # so we allow a small margin of error.
    assert abs(a.reliability() - b.reliability()) < 0.1

# Finally we demonstrate loading from a file and comparing a negative match
minutiae_4 = nbis.extract_minutiae_from_image_file("test_data/p2/p2_1.png", ppi=None)
score = minutiae_1.compare(minutiae_4)
assert score < 50, "Expected a low similarity score between p1_1 and p2_1"
```

## Contributing

Contributions are welcome! Please open an issue or submit a pull request on GitHub.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs",
    "name": "nbis-py",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "fingerprint, nbis, biometrics, rust, uniffi",
    "author": "Varun Chatterji <varun@seventhsense.ai>",
    "author_email": "Varun Chatterji <varun@seventhsense.ai>",
    "download_url": null,
    "platform": null,
    "description": "## NBIS-rs\n\n[![CI](https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs/actions/workflows/ci.yaml/badge.svg)](https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs/actions/workflows/ci.yaml)\n\nThis is a Rust/Python binding to the NIST Biometric Image Software (NBIS) library, which is used for processing biometric images, particularly in the context of fingerprint recognition.\n\n## Features\n\n- Bindings to NBIS functions for minutia extraction, and matching\n- Exports minutiae templates in ISO/IEC 19794-2:2005 format\n- Matches minutiae templates against each other using the NBIS Bozorth3 algorithm\n\n## Installation (Rust)\n\nTo use NBIS-rs, add the following to your `Cargo.toml`:\n\n```toml\n[dependencies]\nnbis = \"0.1.2\"\n```\n\n## Usage (Rust)\n\nHere's a simple example of how to use NBIS-rs in your project:\n\n```rust\nfn main() -> Result<(), Box<dyn std::error::Error>> {\n    use nbis;\n    use nbis::Minutiae;\n\n    // Read the bytes from a file (you could also use nbis::extract_minutiae_from_image_file)\n    // but here we just load the image bytes as image paths on mobile platforms can be tricky.\n    let image_bytes = std::fs::read(\"test_data/p1/p1_1.png\")?;\n    let minutiae_1 = nbis::extract_minutiae(&image_bytes, None)?;\n\n    let image_bytes = std::fs::read(\"test_data/p1/p1_2.png\")?;\n    let minutiae_2 = nbis::extract_minutiae(&image_bytes, None)?;\n\n    let image_bytes = std::fs::read(\"test_data/p1/p1_3.png\")?;\n    let minutiae_3 = nbis::extract_minutiae(&image_bytes, None)?;\n\n    // Compare the two sets of minutiae\n    let score = minutiae_1.compare(&minutiae_2);\n    assert!(score > 50, \"Expected a high similarity score between p1_1 and p1_2\");\n    let score = minutiae_1.compare(&minutiae_3);\n    assert!(score > 50, \"Expected a high similarity score between p1_1 and p1_3\");\n    let score = minutiae_2.compare(&minutiae_3);\n    assert!(score > 50, \"Expected a high similarity score between p1_2 and p1_3\");\n\n    // Next we will demonstrate conversion to ISO/IEC 19794-2:2005 format\n    // and back to a `Minutiae` object.\n    // First, convert the minutiae to ISO template bytes\n    let iso_template: Vec<u8> = minutiae_1.to_iso_19794_2_2005();\n    // And load it back\n    let minutiae_from_iso = nbis::load_iso_19794_2_2005(&iso_template)?;\n    // Compare the original minutiae with the one loaded from ISO template\n    for (a, b) in minutiae_from_iso.get().iter().zip(minutiae_1.get().iter()) {\n        assert_eq!(a.x(), b.x());\n        assert_eq!(a.y(), b.y());\n        assert_eq!(a.angle(), b.angle());\n        assert_eq!(a.kind(), b.kind());\n        // Reliability is quantized in the round-trip conversion,\n        // so we allow a small margin of error.\n        assert!((a.reliability() - b.reliability()).abs() < 1e-1);\n    }\n\n    // Finally we demonstrate loading from a file and comparing a negative match\n    let minutiae_4 = nbis::extract_minutiae_from_image_file(\"test_data/p2/p2_1.png\", None)?;\n    let score = minutiae_1.compare(&minutiae_4);\n    assert!(score < 50, \"Expected a low similarity score between p1_1 and p2_1\");\n\n    Ok(())\n}\n```\n\n## Installation (Python)\nTo install the Python bindings, you can use pip:\n\n```bash\npip install nbis-py\n```\n\n## Usage (Python)\n\nHere's a simple example of how to use the NBIS Python bindings:\n\n```python\nimport nbis\n\n# Read the bytes from a file\nimage_bytes = open(\"test_data/p1/p1_1.png\", \"rb\").read()\nminutiae_1 = nbis.extract_minutiae(image=image_bytes, ppi=None)\nimage_bytes = open(\"test_data/p1/p1_2.png\", \"rb\").read()\nminutiae_2 = nbis.extract_minutiae(image=image_bytes, ppi=None)\nimage_bytes = open(\"test_data/p1/p1_3.png\", \"rb\").read()\nminutiae_3 = nbis.extract_minutiae(image=image_bytes, ppi=None)\n\n# Compare the two sets of minutiae\nscore = minutiae_1.compare(minutiae_2)\nassert score > 50, \"Expected a high similarity score between p1_1 and p1_2\"\nscore = minutiae_1.compare(minutiae_3)\nassert score > 50, \"Expected a high similarity score between p1_1 and p1_3\"\nscore = minutiae_2.compare(minutiae_3)\nassert score > 50, \"Expected a high similarity score between p1_2 and p1_3\"\n\n# Convert minutiae to ISO/IEC 19794-2:2005 format\niso_template = minutiae_1.to_iso_19794_2_2005()\n# Load it back\nminutiae_from_iso = nbis.load_iso_19794_2_2005(iso_template)\n# Compare the original minutiae with the one loaded from ISO template\nfor a, b in zip(minutiae_from_iso.get(), minutiae_1.get()):\n    assert a.x() == b.x()\n    assert a.y() == b.y()\n    assert a.angle() == b.angle()\n    assert a.kind() == b.kind()\n    # Reliability is quantized in the round-trip conversion,\n    # so we allow a small margin of error.\n    assert abs(a.reliability() - b.reliability()) < 0.1\n\n# Finally we demonstrate loading from a file and comparing a negative match\nminutiae_4 = nbis.extract_minutiae_from_image_file(\"test_data/p2/p2_1.png\", ppi=None)\nscore = minutiae_1.compare(minutiae_4)\nassert score < 50, \"Expected a low similarity score between p1_1 and p2_1\"\n```\n\n## Contributing\n\nContributions are welcome! Please open an issue or submit a pull request on GitHub.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python bindings for NBIS fingerprint processing using Rust + UniFFI",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs",
        "Repository": "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs"
    },
    "split_keywords": [
        "fingerprint",
        " nbis",
        " biometrics",
        " rust",
        " uniffi"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "14b265b4c688fb589f94d29259a516119f049b2b4e0d4b0ed86a8a7c5269c398",
                "md5": "4b2ead574e09541fdd4553bcbaa6a06b",
                "sha256": "16f85781a8a85d21868937e132d9f66a67db83ed9651b70c6a1fb68f7a1479a6"
            },
            "downloads": -1,
            "filename": "nbis_py-0.1.2-py3-none-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "4b2ead574e09541fdd4553bcbaa6a06b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 1041351,
            "upload_time": "2025-07-15T19:24:36",
            "upload_time_iso_8601": "2025-07-15T19:24:36.765640Z",
            "url": "https://files.pythonhosted.org/packages/14/b2/65b4c688fb589f94d29259a516119f049b2b4e0d4b0ed86a8a7c5269c398/nbis_py-0.1.2-py3-none-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8ff0be56ff1bd707deb83b22f2b660a5f123e9476ba4d2f05da87709f55a1c6d",
                "md5": "d529c2124e5870cd203a3e966dea2846",
                "sha256": "ccc61cfe7405d996ab46f30279f981ea3ed55cee93a284874cdcb5ca15ee645d"
            },
            "downloads": -1,
            "filename": "nbis_py-0.1.2-py3-none-manylinux_2_34_x86_64.whl",
            "has_sig": false,
            "md5_digest": "d529c2124e5870cd203a3e966dea2846",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 1170687,
            "upload_time": "2025-07-15T19:24:38",
            "upload_time_iso_8601": "2025-07-15T19:24:38.509800Z",
            "url": "https://files.pythonhosted.org/packages/8f/f0/be56ff1bd707deb83b22f2b660a5f123e9476ba4d2f05da87709f55a1c6d/nbis_py-0.1.2-py3-none-manylinux_2_34_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-15 19:24:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Seventh-Sense-Artificial-Intelligence",
    "github_project": "nbis-rs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nbis-py"
}
        
Elapsed time: 0.71861s