## NBIS-rs
This is a Rust/Python binding to the [NIST Biometric Image Software](https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis) (NBIS) library, which is used for processing biometric images, particularly in the context of fingerprint recognition.
For convenience, this library also binds to the [NIST Fingerprint Image Quality](https://www.nist.gov/services-resources/software/nfiq-2) (NFIQ) version 2.
## Features
- Bindings to NBIS functions for minutia extraction, matching
- Exports minutiae templates in ISO/IEC 19794-2:2005 format
- Matches minutiae templates against each other using the NBIS Bozorth3 algorithm
- Provides support for NFIQ2 quality assessment
## Installation (Rust)
To use NBIS-rs, add the following to your `Cargo.toml`:
```toml
[dependencies]
nbis-rs = { git = "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs", branch = "main", version = "0.1.2" }
```
Or you can run the following command on the terminal of your new rust project:
cargo add nbis-rs --git https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs --branch main
Running the above command will add the above dependency in your Cargo.toml
Now you can use the nbis-rs rust library in your project as mentioned in next section.
## Usage (Rust)
Here's a simple example of how to use NBIS-rs in your project:
```rust
fn main() -> Result<(), Box<dyn std::error::Error>> {
use nbis;
use nbis::Minutiae;
use nbis::NbisExtractorSettings;
// Configuration for the NbisExtractor
let settings = NbisExtractorSettings {
// No filtering on minutiae quality (all minutiae will be included)
min_quality: 0.0,
// Do not compute ROI or center to save computing resources
get_center: false,
// Do not check if the image is a fingerprint using SIVV
check_fingerprint: false,
// compute the NFIQ score
compute_nfiq2: true,
// No specific PPI, use the default
ppi: None,
};
let extractor = nbis::NbisExtractor::new(settings)?;
// Read the bytes from a file (you could also use nbis::extract_minutiae_from_image_file)
// but here we just load the image bytes as image paths on mobile platforms can be tricky.
let image_bytes = std::fs::read("test_data/p1/p1_1.png")?;
let minutiae_1 = extractor.extract_minutiae(&image_bytes)?;
let image_bytes = std::fs::read("test_data/p1/p1_2.png")?;
let minutiae_2 = extractor.extract_minutiae(&image_bytes)?;
let image_bytes = std::fs::read("test_data/p1/p1_3.png")?;
let minutiae_3 = extractor.extract_minutiae(&image_bytes)?;
// Compare the two sets of minutiae
let score = minutiae_1.compare(&minutiae_2);
assert!(score > 35, "Expected a high similarity score between p1_1 and p1_2");
let score = minutiae_1.compare(&minutiae_3);
assert!(score > 35, "Expected a high similarity score between p1_1 and p1_3");
let score = minutiae_2.compare(&minutiae_3);
assert!(score > 35, "Expected a high similarity score between p1_2 and p1_3");
// Next we will demonstrate conversion to ISO/IEC 19794-2:2005 format
// and back to a `Minutiae` object.
// First, convert the minutiae to ISO template bytes
let iso_template: Vec<u8> = minutiae_1.to_iso_19794_2_2005();
// And load it back
let minutiae_from_iso = extractor.load_iso_19794_2_2005(&iso_template)?;
// Compare the original minutiae with the one loaded from ISO template
for (a, b) in minutiae_from_iso.get().iter().zip(minutiae_1.get().iter()) {
assert_eq!(a.x(), b.x());
assert_eq!(a.y(), b.y());
assert_eq!(a.angle(), b.angle());
assert_eq!(a.kind(), b.kind());
// Reliability is quantized in the round-trip conversion,
// so we allow a small margin of error.
assert!((a.reliability() - b.reliability()).abs() < 1e-1);
}
// Finally we demonstrate loading from a file and comparing a negative match
let minutiae_4 = extractor.extract_minutiae_from_image_file("test_data/p2/p2_1.png")?;
let score = minutiae_1.compare(&minutiae_4);
assert!(score < 35, "Expected a low similarity score between p1_1 and p2_1");
// We can access the NFIQ2 quality via:
let nfiq2_quality = minutiae_1.quality();
assert!(nfiq2_quality.score > 50, "Expected a positive NFIQ2 quality score");
Ok(())
}
```
## Installation (Python)
To install the Python bindings, you can use pip:
```bash
pip install nbis-py
```
## Usage (Python)
Here's a simple example of how to use the NBIS Python bindings:
```python
import nbis
from nbis import NbisExtractor, NbisExtractorSettings
#Configuration for the NbisExtractor
settings = NbisExtractorSettings(
# Do not filter on minutiae quality (get all minutiae)
min_quality=0.0,
# Do not get the fingerprint center or ROI
get_center=False,
# Do not use SIVV to check if the image is a fingerprint
check_fingerprint=False,
# Compute the NFIQ2 quality score
compute_nfiq2=True,
# No specific PPI, use the default
ppi=None,
)
extractor = nbis.new_nbis_extractor(settings)
# Read the bytes from a file
image_bytes = open("test_data/p1/p1_1.png", "rb").read()
minutiae_1 = extractor.extract_minutiae(image_bytes)
image_bytes = open("test_data/p1/p1_2.png", "rb").read()
minutiae_2 = extractor.extract_minutiae(image_bytes)
image_bytes = open("test_data/p1/p1_3.png", "rb").read()
minutiae_3 = extractor.extract_minutiae(image_bytes)
# Compare the two sets of minutiae
score = minutiae_1.compare(minutiae_2)
assert score > 50, "Expected a high similarity score between p1_1 and p1_2"
score = minutiae_1.compare(minutiae_3)
assert score > 50, "Expected a high similarity score between p1_1 and p1_3"
score = minutiae_2.compare(minutiae_3)
assert score > 50, "Expected a high similarity score between p1_2 and p1_3"
# Convert minutiae to ISO/IEC 19794-2:2005 format
iso_template = minutiae_1.to_iso_19794_2_2005()
# Load it back
minutiae_from_iso = extractor.load_iso_19794_2_2005(iso_template)
# Compare the original minutiae with the one loaded from ISO template
for a, b in zip(minutiae_from_iso.get(), minutiae_1.get()):
assert a.x() == b.x()
assert a.y() == b.y()
assert a.angle() == b.angle()
assert a.kind() == b.kind()
# Reliability is quantized in the round-trip conversion,
# so we allow a small margin of error.
assert abs(a.reliability() - b.reliability()) < 0.1
# Finally we demonstrate loading from a file and comparing a negative match
minutiae_4 = extractor.extract_minutiae_from_image_file("test_data/p2/p2_1.png")
score = minutiae_1.compare(minutiae_4)
assert score < 50, "Expected a low similarity score between p1_1 and p2_1"
# We can access the NFIQ2 quality via:
nfiq2_quality = minutiae_1.quality()
assert nfiq2_quality.score > 50, "Expected a positive NFIQ2 quality score"
```
## Contributing
Contributions are welcome! Please open an issue or submit a pull request on GitHub.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs",
"name": "nbis-py",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "fingerprint, nbis, biometrics, rust, uniffi",
"author": null,
"author_email": "Varun Chatterji <varun@seventhsense.ai>",
"download_url": null,
"platform": null,
"description": "## NBIS-rs\n\nThis is a Rust/Python binding to the [NIST Biometric Image Software](https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis) (NBIS) library, which is used for processing biometric images, particularly in the context of fingerprint recognition.\n\nFor convenience, this library also binds to the [NIST Fingerprint Image Quality](https://www.nist.gov/services-resources/software/nfiq-2) (NFIQ) version 2. \n\n## Features\n\n- Bindings to NBIS functions for minutia extraction, matching\n- Exports minutiae templates in ISO/IEC 19794-2:2005 format\n- Matches minutiae templates against each other using the NBIS Bozorth3 algorithm\n- Provides support for NFIQ2 quality assessment\n\n## Installation (Rust)\n\nTo use NBIS-rs, add the following to your `Cargo.toml`:\n\n```toml\n[dependencies]\nnbis-rs = { git = \"https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs\", branch = \"main\", version = \"0.1.2\" }\n```\nOr you can run the following command on the terminal of your new rust project:\n\ncargo add nbis-rs --git https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs --branch main\n\nRunning the above command will add the above dependency in your Cargo.toml\n\nNow you can use the nbis-rs rust library in your project as mentioned in next section.\n\n## Usage (Rust)\n\nHere's a simple example of how to use NBIS-rs in your project:\n\n```rust\nfn main() -> Result<(), Box<dyn std::error::Error>> {\n use nbis;\n use nbis::Minutiae;\n use nbis::NbisExtractorSettings;\n // Configuration for the NbisExtractor\n let settings = NbisExtractorSettings {\n // No filtering on minutiae quality (all minutiae will be included)\n min_quality: 0.0,\n // Do not compute ROI or center to save computing resources\n get_center: false,\n // Do not check if the image is a fingerprint using SIVV\n check_fingerprint: false,\n // compute the NFIQ score\n compute_nfiq2: true,\n // No specific PPI, use the default\n ppi: None,\n };\n\n let extractor = nbis::NbisExtractor::new(settings)?;\n\n // Read the bytes from a file (you could also use nbis::extract_minutiae_from_image_file)\n // but here we just load the image bytes as image paths on mobile platforms can be tricky.\n let image_bytes = std::fs::read(\"test_data/p1/p1_1.png\")?;\n\n let minutiae_1 = extractor.extract_minutiae(&image_bytes)?;\n\n let image_bytes = std::fs::read(\"test_data/p1/p1_2.png\")?;\n let minutiae_2 = extractor.extract_minutiae(&image_bytes)?;\n\n let image_bytes = std::fs::read(\"test_data/p1/p1_3.png\")?;\n let minutiae_3 = extractor.extract_minutiae(&image_bytes)?;\n\n // Compare the two sets of minutiae\n let score = minutiae_1.compare(&minutiae_2);\n assert!(score > 35, \"Expected a high similarity score between p1_1 and p1_2\");\n let score = minutiae_1.compare(&minutiae_3);\n assert!(score > 35, \"Expected a high similarity score between p1_1 and p1_3\");\n let score = minutiae_2.compare(&minutiae_3);\n assert!(score > 35, \"Expected a high similarity score between p1_2 and p1_3\");\n\n // Next we will demonstrate conversion to ISO/IEC 19794-2:2005 format\n // and back to a `Minutiae` object.\n // First, convert the minutiae to ISO template bytes\n let iso_template: Vec<u8> = minutiae_1.to_iso_19794_2_2005(); \n // And load it back\n let minutiae_from_iso = extractor.load_iso_19794_2_2005(&iso_template)?;\n // Compare the original minutiae with the one loaded from ISO template\n for (a, b) in minutiae_from_iso.get().iter().zip(minutiae_1.get().iter()) {\n assert_eq!(a.x(), b.x());\n assert_eq!(a.y(), b.y());\n assert_eq!(a.angle(), b.angle());\n assert_eq!(a.kind(), b.kind());\n // Reliability is quantized in the round-trip conversion,\n // so we allow a small margin of error.\n assert!((a.reliability() - b.reliability()).abs() < 1e-1);\n }\n\n // Finally we demonstrate loading from a file and comparing a negative match\n let minutiae_4 = extractor.extract_minutiae_from_image_file(\"test_data/p2/p2_1.png\")?;\n let score = minutiae_1.compare(&minutiae_4);\n assert!(score < 35, \"Expected a low similarity score between p1_1 and p2_1\");\n\n // We can access the NFIQ2 quality via:\n let nfiq2_quality = minutiae_1.quality();\n assert!(nfiq2_quality.score > 50, \"Expected a positive NFIQ2 quality score\");\n\n Ok(())\n}\n```\n\n## Installation (Python)\nTo install the Python bindings, you can use pip:\n\n```bash\npip install nbis-py\n```\n\n## Usage (Python)\n\nHere's a simple example of how to use the NBIS Python bindings:\n\n```python\nimport nbis\nfrom nbis import NbisExtractor, NbisExtractorSettings\n\n #Configuration for the NbisExtractor\nsettings = NbisExtractorSettings(\n # Do not filter on minutiae quality (get all minutiae)\n min_quality=0.0,\n # Do not get the fingerprint center or ROI\n get_center=False,\n # Do not use SIVV to check if the image is a fingerprint\n check_fingerprint=False,\n # Compute the NFIQ2 quality score\n compute_nfiq2=True,\n # No specific PPI, use the default\n ppi=None,\n)\n\nextractor = nbis.new_nbis_extractor(settings)\n\n# Read the bytes from a file\nimage_bytes = open(\"test_data/p1/p1_1.png\", \"rb\").read()\nminutiae_1 = extractor.extract_minutiae(image_bytes)\nimage_bytes = open(\"test_data/p1/p1_2.png\", \"rb\").read()\nminutiae_2 = extractor.extract_minutiae(image_bytes)\nimage_bytes = open(\"test_data/p1/p1_3.png\", \"rb\").read()\nminutiae_3 = extractor.extract_minutiae(image_bytes)\n\n# Compare the two sets of minutiae\nscore = minutiae_1.compare(minutiae_2)\nassert score > 50, \"Expected a high similarity score between p1_1 and p1_2\"\nscore = minutiae_1.compare(minutiae_3)\nassert score > 50, \"Expected a high similarity score between p1_1 and p1_3\"\nscore = minutiae_2.compare(minutiae_3)\nassert score > 50, \"Expected a high similarity score between p1_2 and p1_3\"\n\n# Convert minutiae to ISO/IEC 19794-2:2005 format\niso_template = minutiae_1.to_iso_19794_2_2005()\n# Load it back\nminutiae_from_iso = extractor.load_iso_19794_2_2005(iso_template)\n# Compare the original minutiae with the one loaded from ISO template\nfor a, b in zip(minutiae_from_iso.get(), minutiae_1.get()):\n assert a.x() == b.x()\n assert a.y() == b.y()\n assert a.angle() == b.angle()\n assert a.kind() == b.kind()\n # Reliability is quantized in the round-trip conversion,\n # so we allow a small margin of error.\n assert abs(a.reliability() - b.reliability()) < 0.1\n\n# Finally we demonstrate loading from a file and comparing a negative match\nminutiae_4 = extractor.extract_minutiae_from_image_file(\"test_data/p2/p2_1.png\")\nscore = minutiae_1.compare(minutiae_4)\nassert score < 50, \"Expected a low similarity score between p1_1 and p2_1\"\n\n# We can access the NFIQ2 quality via:\nnfiq2_quality = minutiae_1.quality()\nassert nfiq2_quality.score > 50, \"Expected a positive NFIQ2 quality score\"\n```\n\n## Contributing\n\nContributions are welcome! Please open an issue or submit a pull request on GitHub.\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n",
"bugtrack_url": null,
"license": null,
"summary": "Python bindings for NBIS fingerprint processing using Rust + UniFFI",
"version": "0.1.3",
"project_urls": {
"Homepage": "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs",
"Repository": "https://github.com/Seventh-Sense-Artificial-Intelligence/nbis-rs"
},
"split_keywords": [
"fingerprint",
" nbis",
" biometrics",
" rust",
" uniffi"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "cd725fd14657033ec5ce70e2dd160e760a9c39a12fdff119e1ec169bfef5997e",
"md5": "199eac4626fee0a532e0dc96173bec98",
"sha256": "4598c6b7fdabc153ad3262a91194e98845d656b9fae29739195a107d7677726c"
},
"downloads": -1,
"filename": "nbis_py-0.1.3-py3-none-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "199eac4626fee0a532e0dc96173bec98",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 4988964,
"upload_time": "2025-10-08T07:41:51",
"upload_time_iso_8601": "2025-10-08T07:41:51.138616Z",
"url": "https://files.pythonhosted.org/packages/cd/72/5fd14657033ec5ce70e2dd160e760a9c39a12fdff119e1ec169bfef5997e/nbis_py-0.1.3-py3-none-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "54020cb59992a8063a9efcef4f7ceec41549948aba12365193b76ab9bd8551a6",
"md5": "5456fba67149e9814fa6e636021d7f9b",
"sha256": "ec934b5cfd3cacdffdee358f3c99e71fff6fcd18c21c4aa0b4d057c3ffaa184c"
},
"downloads": -1,
"filename": "nbis_py-0.1.3-py3-none-manylinux_2_34_x86_64.whl",
"has_sig": false,
"md5_digest": "5456fba67149e9814fa6e636021d7f9b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 6400153,
"upload_time": "2025-10-08T07:41:53",
"upload_time_iso_8601": "2025-10-08T07:41:53.506158Z",
"url": "https://files.pythonhosted.org/packages/54/02/0cb59992a8063a9efcef4f7ceec41549948aba12365193b76ab9bd8551a6/nbis_py-0.1.3-py3-none-manylinux_2_34_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-08 07:41:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Seventh-Sense-Artificial-Intelligence",
"github_project": "nbis-rs",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "nbis-py"
}