ndonnx


Namendonnx JSON
Version 0.14.0 PyPI version JSON
download
home_pageNone
SummaryONNX backed array library compliant with Array API standard.
upload_time2025-07-21 21:45:11
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords numpy onnx array-api
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ndonnx

[![CI](https://img.shields.io/github/actions/workflow/status/quantco/ndonnx/ci.yml?style=flat-square&branch=main)](https://github.com/quantco/ndonnx/actions/workflows/ci.yml)
[![Documentation](https://readthedocs.org/projects/ndonnx/badge/?version=latest)](https://ndonnx.readthedocs.io/en/latest/?badge=latest)
[![conda-forge](https://img.shields.io/conda/vn/conda-forge/ndonnx?style=flat-square&logoColor=white&logo=conda-forge)](https://anaconda.org/conda-forge/ndonnx)
[![pypi](https://img.shields.io/pypi/v/ndonnx.svg?logo=pypi&logoColor=white)](https://pypi.org/project/ndonnx)

An ONNX-backed array library that is compliant with the [Array API](https://data-apis.org/array-api/) standard.

## Installation

Releases are available on PyPI and conda-forge.

```bash
# using pip
pip install ndonnx
# using conda
conda install ndonnx
# using pixi
pixi add ndonnx
```

## Development

You can install the package in development mode using:

```bash
git clone https://github.com/quantco/ndonnx
cd ndonnx

# For Array API tests
git submodule update --init --recursive

pixi shell
pre-commit run -a
pip install --no-build-isolation --no-deps -e .
pytest tests -n auto
```

## Quick start

`ndonnx` is an ONNX based python array library.

It has a couple of key features:

- It implements the [`Array API`](https://data-apis.org/array-api/) standard. Standard compliant code can be executed without changes across numerous backends such as like NumPy, JAX and now ndonnx.

  ```python
  import numpy as np
  import ndonnx as ndx
  import jax.numpy as jnp

  def mean_drop_outliers(a, low=-5, high=5):
      xp = a.__array_namespace__()
      return xp.mean(a[(low < a) & (a < high)])

  np_result = mean_drop_outliers(np.asarray([-10, 0.5, 1, 5]))
  jax_result = mean_drop_outliers(jnp.asarray([-10, 0.5, 1, 5]))
  onnx_result = mean_drop_outliers(ndx.asarray([-10, 0.5, 1, 5]))

  assert np_result == onnx_result.to_numpy() == jax_result == 0.75
  ```

- It supports ONNX export. This allows you persist your logic into an ONNX computation graph.

  ```python
  import ndonnx as ndx
  import onnx

  # Instantiate placeholder ndonnx array
  x = ndx.array(shape=("N",), dtype=ndx.float32)
  y = mean_drop_outliers(x)

  # Build and save ONNX model to disk
  model = ndx.build({"x": x}, {"y": y})
  onnx.save(model, "mean_drop_outliers.onnx")
  ```

  You can then make predictions using a runtime of your choice.

  ```python
  import onnxruntime as ort
  import numpy as np

  inference_session = ort.InferenceSession("mean_drop_outliers.onnx")
  prediction, = inference_session.run(None, {
      "x": np.array([-10, 0.5, 1, 5], dtype=np.float32),
  })
  assert prediction == 0.75
  ```

In the future we will be enabling a stable API for an extensible data type system. This will allow users to define their own data types and operations on arrays with these data types.

## Array API coverage

Array API compatibility tested against the official `array-api-tests` suite.
Missing coverage is tracked in the `skips.txt` file.
Contributions are welcome!

Run the tests with:

```bash
pixi run arrayapitests
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ndonnx",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "numpy, onnx, array-api",
    "author": null,
    "author_email": "Aditya Goel <agoel4512@gmail.com>, Christian Bourjau <christian.bourjau@quantco.com>",
    "download_url": "https://files.pythonhosted.org/packages/ca/f5/407f1f676fd8df5753fd458b95c5b59893b9717d5a5a60668d65d12b4edb/ndonnx-0.14.0.tar.gz",
    "platform": null,
    "description": "# ndonnx\n\n[![CI](https://img.shields.io/github/actions/workflow/status/quantco/ndonnx/ci.yml?style=flat-square&branch=main)](https://github.com/quantco/ndonnx/actions/workflows/ci.yml)\n[![Documentation](https://readthedocs.org/projects/ndonnx/badge/?version=latest)](https://ndonnx.readthedocs.io/en/latest/?badge=latest)\n[![conda-forge](https://img.shields.io/conda/vn/conda-forge/ndonnx?style=flat-square&logoColor=white&logo=conda-forge)](https://anaconda.org/conda-forge/ndonnx)\n[![pypi](https://img.shields.io/pypi/v/ndonnx.svg?logo=pypi&logoColor=white)](https://pypi.org/project/ndonnx)\n\nAn ONNX-backed array library that is compliant with the [Array API](https://data-apis.org/array-api/) standard.\n\n## Installation\n\nReleases are available on PyPI and conda-forge.\n\n```bash\n# using pip\npip install ndonnx\n# using conda\nconda install ndonnx\n# using pixi\npixi add ndonnx\n```\n\n## Development\n\nYou can install the package in development mode using:\n\n```bash\ngit clone https://github.com/quantco/ndonnx\ncd ndonnx\n\n# For Array API tests\ngit submodule update --init --recursive\n\npixi shell\npre-commit run -a\npip install --no-build-isolation --no-deps -e .\npytest tests -n auto\n```\n\n## Quick start\n\n`ndonnx` is an ONNX based python array library.\n\nIt has a couple of key features:\n\n- It implements the [`Array API`](https://data-apis.org/array-api/) standard. Standard compliant code can be executed without changes across numerous backends such as like NumPy, JAX and now ndonnx.\n\n  ```python\n  import numpy as np\n  import ndonnx as ndx\n  import jax.numpy as jnp\n\n  def mean_drop_outliers(a, low=-5, high=5):\n      xp = a.__array_namespace__()\n      return xp.mean(a[(low < a) & (a < high)])\n\n  np_result = mean_drop_outliers(np.asarray([-10, 0.5, 1, 5]))\n  jax_result = mean_drop_outliers(jnp.asarray([-10, 0.5, 1, 5]))\n  onnx_result = mean_drop_outliers(ndx.asarray([-10, 0.5, 1, 5]))\n\n  assert np_result == onnx_result.to_numpy() == jax_result == 0.75\n  ```\n\n- It supports ONNX export. This allows you persist your logic into an ONNX computation graph.\n\n  ```python\n  import ndonnx as ndx\n  import onnx\n\n  # Instantiate placeholder ndonnx array\n  x = ndx.array(shape=(\"N\",), dtype=ndx.float32)\n  y = mean_drop_outliers(x)\n\n  # Build and save ONNX model to disk\n  model = ndx.build({\"x\": x}, {\"y\": y})\n  onnx.save(model, \"mean_drop_outliers.onnx\")\n  ```\n\n  You can then make predictions using a runtime of your choice.\n\n  ```python\n  import onnxruntime as ort\n  import numpy as np\n\n  inference_session = ort.InferenceSession(\"mean_drop_outliers.onnx\")\n  prediction, = inference_session.run(None, {\n      \"x\": np.array([-10, 0.5, 1, 5], dtype=np.float32),\n  })\n  assert prediction == 0.75\n  ```\n\nIn the future we will be enabling a stable API for an extensible data type system. This will allow users to define their own data types and operations on arrays with these data types.\n\n## Array API coverage\n\nArray API compatibility tested against the official `array-api-tests` suite.\nMissing coverage is tracked in the `skips.txt` file.\nContributions are welcome!\n\nRun the tests with:\n\n```bash\npixi run arrayapitests\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "ONNX backed array library compliant with Array API standard.",
    "version": "0.14.0",
    "project_urls": {
        "repository": "https://github.com/quantco/ndonnx"
    },
    "split_keywords": [
        "numpy",
        " onnx",
        " array-api"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "47e98a0841444eebd89bdbb3a5412df9ddc9eef534fab5a8ad29bfedc88f5dff",
                "md5": "58a6a67cccdd5aa28bb562121b14c84b",
                "sha256": "b13e18211297fd416da345513761783629b4133ce060534451cb5c7291d40fbe"
            },
            "downloads": -1,
            "filename": "ndonnx-0.14.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "58a6a67cccdd5aa28bb562121b14c84b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 80879,
            "upload_time": "2025-07-21T21:45:10",
            "upload_time_iso_8601": "2025-07-21T21:45:10.526697Z",
            "url": "https://files.pythonhosted.org/packages/47/e9/8a0841444eebd89bdbb3a5412df9ddc9eef534fab5a8ad29bfedc88f5dff/ndonnx-0.14.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "caf5407f1f676fd8df5753fd458b95c5b59893b9717d5a5a60668d65d12b4edb",
                "md5": "5cfa64edd30d1eb70a59c8ee6dc8e267",
                "sha256": "f491c01a541a4299b7f4aeac9173327fff55252f69e94e4371025fa5d11392b1"
            },
            "downloads": -1,
            "filename": "ndonnx-0.14.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5cfa64edd30d1eb70a59c8ee6dc8e267",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 346752,
            "upload_time": "2025-07-21T21:45:11",
            "upload_time_iso_8601": "2025-07-21T21:45:11.860577Z",
            "url": "https://files.pythonhosted.org/packages/ca/f5/407f1f676fd8df5753fd458b95c5b59893b9717d5a5a60668d65d12b4edb/ndonnx-0.14.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-21 21:45:11",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "quantco",
    "github_project": "ndonnx",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ndonnx"
}
        
Elapsed time: 1.73571s