ndsharray


Namendsharray JSON
Version 1.1.3 PyPI version JSON
download
home_pagehttps://github.com/monzelr/ndsharray
SummarySharing numpy ndarray with a simple API between different python processes with shared memory.
upload_time2024-06-24 13:39:36
maintainerNone
docs_urlNone
authorRune Monzel
requires_python>=3.6
licenseBSD 3-Clause License
keywords sharing numpy arrays inter process communication subprocess multiple process reading a numpy ndarray
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Overview
========
ndarray + sharing = ndsharray

Introduction
------------
This python module let you share a numpy ndarray within different processes (either via python's multiprocessing or 
sharing between different python instances). The library behind this package is the lib 
[mmap](https://docs.python.org/3/library/mmap.html) from official python - no extra library, except numpy, is needed. 
The mmap approach is using the shared memory, which can be accessed by different CPUs/python instances. Using shared 
memory is much 
faster than the pickle approach - you can even do a video streaming on a Raspberry Pi / Jetson Nano over multiple 
python processes.\
This library is easy-to-use, just initialize the shared array with a unique tag and write/read! You can even change the 
numpy array dimension/shape/dtype during runtime - the mmap will be silently rebuild if there is a change in the 
numpy array  size/shape/dtype.

Small Example Code:
```python
import numpy as np
from ndsharray import NdShArray
    
shared_array = NdShArray("my_unique_tag", r_w='w')  # r_w must be specified

my_array = np.random.random((400, 800))
shared_array.write(my_array)

print(my_array)
```

That's all for writing into shared memory. How to read? Open a second python instance:
```python
import numpy as np
from ndsharray import NdShArray

shared_array = NdShArray("my_unique_tag", r_w='r')  # r_w must be specified

status, my_array = shared_array.read()

print(my_array)
```

Documentation
-------------
Can be found here: https://ndsharray.readthedocs.io/en/latest/


Requirements
------------ 
- Python ≥ 3.6
- numpy

Tested with example codes on 
- Windows 10, amd64, Python 3.6 / 3.8
- Ubuntu 20, amd64, Python 3.6 /3.8
- NVIDIA Jetson Nano with Ubuntu 18.04, ARM64-bit (aarch64), Python 3.6

Some technical notes
--------------------
This library shall be an easy-to-use library and also shall be faster than pickling numpy arrays to another process. 
Please note that the python's provided 
[shared_memory](https://docs.python.org/3/library/multiprocessing.shared_memory.html) does the same as ndsharray, but 
is using byte array instead of numpy array! However, shared_memory is available since python 3.8 and not 
supported for python 3.6.


Installation from Github
------------------------
Make sure to have git, python and pip in your environment path or activate your python environment.\
To install enter in cmd/shell:
```console
git clone https://github.com/monzelr/ndsharray.git

cd ndsharray

pip install .
```

Alternative with python:
```console
python setup.py install
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/monzelr/ndsharray",
    "name": "ndsharray",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "sharing numpy arrays, inter process communication, subprocess, multiple process reading a numpy ndarray",
    "author": "Rune Monzel",
    "author_email": "runemonzel@googlemail.com",
    "download_url": null,
    "platform": null,
    "description": "Overview\r\n========\r\nndarray + sharing = ndsharray\r\n\r\nIntroduction\r\n------------\r\nThis python module let you share a numpy ndarray within different processes (either via python's multiprocessing or \r\nsharing between different python instances). The library behind this package is the lib \r\n[mmap](https://docs.python.org/3/library/mmap.html) from official python - no extra library, except numpy, is needed. \r\nThe mmap approach is using the shared memory, which can be accessed by different CPUs/python instances. Using shared \r\nmemory is much \r\nfaster than the pickle approach - you can even do a video streaming on a Raspberry Pi / Jetson Nano over multiple \r\npython processes.\\\r\nThis library is easy-to-use, just initialize the shared array with a unique tag and write/read! You can even change the \r\nnumpy array dimension/shape/dtype during runtime - the mmap will be silently rebuild if there is a change in the \r\nnumpy array  size/shape/dtype.\r\n\r\nSmall Example Code:\r\n```python\r\nimport numpy as np\r\nfrom ndsharray import NdShArray\r\n    \r\nshared_array = NdShArray(\"my_unique_tag\", r_w='w')  # r_w must be specified\r\n\r\nmy_array = np.random.random((400, 800))\r\nshared_array.write(my_array)\r\n\r\nprint(my_array)\r\n```\r\n\r\nThat's all for writing into shared memory. How to read? Open a second python instance:\r\n```python\r\nimport numpy as np\r\nfrom ndsharray import NdShArray\r\n\r\nshared_array = NdShArray(\"my_unique_tag\", r_w='r')  # r_w must be specified\r\n\r\nstatus, my_array = shared_array.read()\r\n\r\nprint(my_array)\r\n```\r\n\r\nDocumentation\r\n-------------\r\nCan be found here: https://ndsharray.readthedocs.io/en/latest/\r\n\r\n\r\nRequirements\r\n------------ \r\n- Python \u00e2\u2030\u00a5 3.6\r\n- numpy\r\n\r\nTested with example codes on \r\n- Windows 10, amd64, Python 3.6 / 3.8\r\n- Ubuntu 20, amd64, Python 3.6 /3.8\r\n- NVIDIA Jetson Nano with Ubuntu 18.04, ARM64-bit (aarch64), Python 3.6\r\n\r\nSome technical notes\r\n--------------------\r\nThis library shall be an easy-to-use library and also shall be faster than pickling numpy arrays to another process. \r\nPlease note that the python's provided \r\n[shared_memory](https://docs.python.org/3/library/multiprocessing.shared_memory.html) does the same as ndsharray, but \r\nis using byte array instead of numpy array! However, shared_memory is available since python 3.8 and not \r\nsupported for python 3.6.\r\n\r\n\r\nInstallation from Github\r\n------------------------\r\nMake sure to have git, python and pip in your environment path or activate your python environment.\\\r\nTo install enter in cmd/shell:\r\n```console\r\ngit clone https://github.com/monzelr/ndsharray.git\r\n\r\ncd ndsharray\r\n\r\npip install .\r\n```\r\n\r\nAlternative with python:\r\n```console\r\npython setup.py install\r\n```\r\n\r\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "Sharing numpy ndarray with a simple API between different python processes with shared memory.",
    "version": "1.1.3",
    "project_urls": {
        "Homepage": "https://github.com/monzelr/ndsharray"
    },
    "split_keywords": [
        "sharing numpy arrays",
        " inter process communication",
        " subprocess",
        " multiple process reading a numpy ndarray"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8ccf1a48fc3263cd66150425fe3b09e3c2ea07e57403398b52c5d654c4d8b129",
                "md5": "0bf7b3c5776aca6c5bae1c54a339594b",
                "sha256": "2a8e1fa5328eb160b5bf34f7bf433f91d520ef9b7780707911fe26a5689f84a7"
            },
            "downloads": -1,
            "filename": "ndsharray-1.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0bf7b3c5776aca6c5bae1c54a339594b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 8485,
            "upload_time": "2024-06-24T13:39:36",
            "upload_time_iso_8601": "2024-06-24T13:39:36.659465Z",
            "url": "https://files.pythonhosted.org/packages/8c/cf/1a48fc3263cd66150425fe3b09e3c2ea07e57403398b52c5d654c4d8b129/ndsharray-1.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-24 13:39:36",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "monzelr",
    "github_project": "ndsharray",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ndsharray"
}
        
Elapsed time: 4.68885s