negspacy


Namenegspacy JSON
Version 1.0.4 PyPI version JSON
download
home_pagehttps://github.com/jenojp/negspacy
SummaryA spaCy pipeline object for negation.
upload_time2023-05-20 18:31:30
maintainer
docs_urlNone
authorJeno Pizarro
requires_python>=3.6.0
licenseMIT
keywords nlp spacy spacy negation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            
<p align="center"><img width="40%" src="docs/icon.png" /></p>


# negspacy: negation for spaCy

[![Build Status](https://dev.azure.com/jenopizzaro/negspacy/_apis/build/status/jenojp.negspacy?branchName=master)](https://dev.azure.com/jenopizzaro/negspacy/_build/latest?definitionId=2&branchName=master) [![Built with spaCy](https://img.shields.io/badge/made%20with%20❤%20and-spaCy-09a3d5.svg)](https://spacy.io) [![pypi Version](https://img.shields.io/pypi/v/negspacy.svg?style=flat-square)](https://pypi.org/project/negspacy/) [![DOI](https://zenodo.org/badge/201071164.svg)](https://zenodo.org/badge/latestdoi/201071164) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square)](https://github.com/ambv/black)

spaCy pipeline object for negating concepts in text. Based on the NegEx algorithm.

***NegEx - A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries
Chapman, Bridewell, Hanbury, Cooper, Buchanan***
[https://doi.org/10.1006/jbin.2001.1029](https://doi.org/10.1006/jbin.2001.1029)

## What's new
Version 1.0 is a major version update providing support for spaCy 3.0's new interface for adding pipeline components. As a result, it is not backwards compatible with previous versions of negspacy.

If your project uses spaCy 2.3.5 or earlier, you will need to use version 0.1.9. See [archived readme](https://github.com/jenojp/negspacy/blob/v0.1.9_spacy_2.3.5/README.md).

## Installation and usage
Install the library.
```bash
pip install negspacy
```

Import library and spaCy.
```python
import spacy
from negspacy.negation import Negex
```

Load spacy language model. Add negspacy pipeline object. Filtering on entity types is optional.
```python
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("negex", config={"ent_types":["PERSON","ORG"]})

```

View negations.
```python
doc = nlp("She does not like Steve Jobs but likes Apple products.")

for e in doc.ents:
	print(e.text, e._.negex)
```

```console
Steve Jobs True
Apple False
```

Consider pairing with [scispacy](https://allenai.github.io/scispacy/) to find UMLS concepts in text and process negations.

## NegEx Patterns

* **pseudo_negations** - phrases that are false triggers, ambiguous negations, or double negatives
* **preceding_negations** - negation phrases that precede an entity
* **following_negations** - negation phrases that follow an entity
* **termination** - phrases that cut a sentence in parts, for purposes of negation detection (.e.g., "but")

### Termsets

Designate termset to use, `en_clinical` is used by default.

* `en` = phrases for general english language text
* `en_clinical` **DEFAULT** = adds phrases specific to clinical domain to general english
* `en_clinical_sensitive` = adds additional phrases to help rule out historical and possibly irrelevant entities

To set:
```python
from negspacy.negation import Negex
from negspacy.termsets import termset

ts = termset("en")

nlp = spacy.load("en_core_web_sm")
nlp.add_pipe(
    "negex",
    config={
        "neg_termset":ts.get_patterns()
    }
)

```

## Additional Functionality

### Change patterns or view patterns in use

Replace all patterns with your own set
```python
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe(
    "negex", 
    config={
        "neg_termset":{
            "pseudo_negations": ["might not"],
            "preceding_negations": ["not"],
            "following_negations":["declined"],
            "termination": ["but","however"]
        }
    }
    )
```

Add and remove individual patterns on the fly from built-in termsets
```python
from negspacy.termsets import termset
ts = termset("en")
ts.add_patterns({
            "pseudo_negations": ["my favorite pattern"],
            "termination": ["these are", "great patterns", "but"],
            "preceding_negations": ["wow a negation"],
            "following_negations": ["extra negation"],
        })
#OR
ts.remove_patterns(
        {
            "termination": ["these are", "great patterns"],
            "pseudo_negations": ["my favorite pattern"],
            "preceding_negations": ["denied", "wow a negation"],
            "following_negations": ["unlikely", "extra negation"],
        }
    )
```

View patterns in use
```python
from negspacy.termsets import termset
ts = termset("en_clinical")
print(ts.get_patterns())
```


### Negations in noun chunks

Depending on the Named Entity Recognition model you are using, you _may_ have negations "chunked together" with nouns. For example:
```python
nlp = spacy.load("en_core_sci_sm")
doc = nlp("There is no headache.")
for e in doc.ents:
    print(e.text)

# no headache
```
This would cause the Negex algorithm to miss the preceding negation. To account for this, you can add a ```chunk_prefix```:

```python
nlp = spacy.load("en_core_sci_sm")
ts = termset("en_clinical")
nlp.add_pipe(
    "negex",
    config={
        "chunk_prefix": ["no"],
    },
    last=True,
)
doc = nlp("There is no headache.")
for e in doc.ents:
    print(e.text, e._.negex)

# no headache True
```


## Contributing
[contributing](https://github.com/jenojp/negspacy/blob/master/CONTRIBUTING.md)

## Authors
* Jeno Pizarro

## License
[license](https://github.com/jenojp/negspacy/blob/master/LICENSE)

## Other libraries

This library is featured in the [spaCy Universe](https://spacy.io/universe). Check it out for other useful libraries and inspiration.

If you're looking for a spaCy pipeline object to extract values that correspond to a named entity (e.g., birth dates, account numbers, or laboratory results) take a look at [extractacy](https://github.com/jenojp/extractacy).

<p align="left"><img width="40%" src="https://github.com/jenojp/extractacy/blob/master/docs/icon.png?raw=true" /></p>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jenojp/negspacy",
    "name": "negspacy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6.0",
    "maintainer_email": "",
    "keywords": "nlp spacy SpaCy negation",
    "author": "Jeno Pizarro",
    "author_email": "jenopizzaro@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/6b/bd/ef5354a8900d534dd149186092efcd86c083b6eb0a635112da84a7769aa2/negspacy-1.0.4.tar.gz",
    "platform": null,
    "description": "\n<p align=\"center\"><img width=\"40%\" src=\"docs/icon.png\" /></p>\n\n\n# negspacy: negation for spaCy\n\n[![Build Status](https://dev.azure.com/jenopizzaro/negspacy/_apis/build/status/jenojp.negspacy?branchName=master)](https://dev.azure.com/jenopizzaro/negspacy/_build/latest?definitionId=2&branchName=master) [![Built with spaCy](https://img.shields.io/badge/made%20with%20\u2764%20and-spaCy-09a3d5.svg)](https://spacy.io) [![pypi Version](https://img.shields.io/pypi/v/negspacy.svg?style=flat-square)](https://pypi.org/project/negspacy/) [![DOI](https://zenodo.org/badge/201071164.svg)](https://zenodo.org/badge/latestdoi/201071164) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg?style=flat-square)](https://github.com/ambv/black)\n\nspaCy pipeline object for negating concepts in text. Based on the NegEx algorithm.\n\n***NegEx - A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries\nChapman, Bridewell, Hanbury, Cooper, Buchanan***\n[https://doi.org/10.1006/jbin.2001.1029](https://doi.org/10.1006/jbin.2001.1029)\n\n## What's new\nVersion 1.0 is a major version update providing support for spaCy 3.0's new interface for adding pipeline components. As a result, it is not backwards compatible with previous versions of negspacy.\n\nIf your project uses spaCy 2.3.5 or earlier, you will need to use version 0.1.9. See [archived readme](https://github.com/jenojp/negspacy/blob/v0.1.9_spacy_2.3.5/README.md).\n\n## Installation and usage\nInstall the library.\n```bash\npip install negspacy\n```\n\nImport library and spaCy.\n```python\nimport spacy\nfrom negspacy.negation import Negex\n```\n\nLoad spacy language model. Add negspacy pipeline object. Filtering on entity types is optional.\n```python\nnlp = spacy.load(\"en_core_web_sm\")\nnlp.add_pipe(\"negex\", config={\"ent_types\":[\"PERSON\",\"ORG\"]})\n\n```\n\nView negations.\n```python\ndoc = nlp(\"She does not like Steve Jobs but likes Apple products.\")\n\nfor e in doc.ents:\n\tprint(e.text, e._.negex)\n```\n\n```console\nSteve Jobs True\nApple False\n```\n\nConsider pairing with [scispacy](https://allenai.github.io/scispacy/) to find UMLS concepts in text and process negations.\n\n## NegEx Patterns\n\n* **pseudo_negations** - phrases that are false triggers, ambiguous negations, or double negatives\n* **preceding_negations** - negation phrases that precede an entity\n* **following_negations** - negation phrases that follow an entity\n* **termination** - phrases that cut a sentence in parts, for purposes of negation detection (.e.g., \"but\")\n\n### Termsets\n\nDesignate termset to use, `en_clinical` is used by default.\n\n* `en` = phrases for general english language text\n* `en_clinical` **DEFAULT** = adds phrases specific to clinical domain to general english\n* `en_clinical_sensitive` = adds additional phrases to help rule out historical and possibly irrelevant entities\n\nTo set:\n```python\nfrom negspacy.negation import Negex\nfrom negspacy.termsets import termset\n\nts = termset(\"en\")\n\nnlp = spacy.load(\"en_core_web_sm\")\nnlp.add_pipe(\n    \"negex\",\n    config={\n        \"neg_termset\":ts.get_patterns()\n    }\n)\n\n```\n\n## Additional Functionality\n\n### Change patterns or view patterns in use\n\nReplace all patterns with your own set\n```python\nnlp = spacy.load(\"en_core_web_sm\")\nnlp.add_pipe(\n    \"negex\", \n    config={\n        \"neg_termset\":{\n            \"pseudo_negations\": [\"might not\"],\n            \"preceding_negations\": [\"not\"],\n            \"following_negations\":[\"declined\"],\n            \"termination\": [\"but\",\"however\"]\n        }\n    }\n    )\n```\n\nAdd and remove individual patterns on the fly from built-in termsets\n```python\nfrom negspacy.termsets import termset\nts = termset(\"en\")\nts.add_patterns({\n            \"pseudo_negations\": [\"my favorite pattern\"],\n            \"termination\": [\"these are\", \"great patterns\", \"but\"],\n            \"preceding_negations\": [\"wow a negation\"],\n            \"following_negations\": [\"extra negation\"],\n        })\n#OR\nts.remove_patterns(\n        {\n            \"termination\": [\"these are\", \"great patterns\"],\n            \"pseudo_negations\": [\"my favorite pattern\"],\n            \"preceding_negations\": [\"denied\", \"wow a negation\"],\n            \"following_negations\": [\"unlikely\", \"extra negation\"],\n        }\n    )\n```\n\nView patterns in use\n```python\nfrom negspacy.termsets import termset\nts = termset(\"en_clinical\")\nprint(ts.get_patterns())\n```\n\n\n### Negations in noun chunks\n\nDepending on the Named Entity Recognition model you are using, you _may_ have negations \"chunked together\" with nouns. For example:\n```python\nnlp = spacy.load(\"en_core_sci_sm\")\ndoc = nlp(\"There is no headache.\")\nfor e in doc.ents:\n    print(e.text)\n\n# no headache\n```\nThis would cause the Negex algorithm to miss the preceding negation. To account for this, you can add a ```chunk_prefix```:\n\n```python\nnlp = spacy.load(\"en_core_sci_sm\")\nts = termset(\"en_clinical\")\nnlp.add_pipe(\n    \"negex\",\n    config={\n        \"chunk_prefix\": [\"no\"],\n    },\n    last=True,\n)\ndoc = nlp(\"There is no headache.\")\nfor e in doc.ents:\n    print(e.text, e._.negex)\n\n# no headache True\n```\n\n\n## Contributing\n[contributing](https://github.com/jenojp/negspacy/blob/master/CONTRIBUTING.md)\n\n## Authors\n* Jeno Pizarro\n\n## License\n[license](https://github.com/jenojp/negspacy/blob/master/LICENSE)\n\n## Other libraries\n\nThis library is featured in the [spaCy Universe](https://spacy.io/universe). Check it out for other useful libraries and inspiration.\n\nIf you're looking for a spaCy pipeline object to extract values that correspond to a named entity (e.g., birth dates, account numbers, or laboratory results) take a look at [extractacy](https://github.com/jenojp/extractacy).\n\n<p align=\"left\"><img width=\"40%\" src=\"https://github.com/jenojp/extractacy/blob/master/docs/icon.png?raw=true\" /></p>\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A spaCy pipeline object for negation.",
    "version": "1.0.4",
    "project_urls": {
        "Homepage": "https://github.com/jenojp/negspacy"
    },
    "split_keywords": [
        "nlp",
        "spacy",
        "spacy",
        "negation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6bbdef5354a8900d534dd149186092efcd86c083b6eb0a635112da84a7769aa2",
                "md5": "1d868eb632c357ee4486168fce8c4390",
                "sha256": "c068bfbbcd28a63969733c3310a40e557a802b8fbb6b79cd724d6261860abb7c"
            },
            "downloads": -1,
            "filename": "negspacy-1.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "1d868eb632c357ee4486168fce8c4390",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6.0",
            "size": 13743,
            "upload_time": "2023-05-20T18:31:30",
            "upload_time_iso_8601": "2023-05-20T18:31:30.103623Z",
            "url": "https://files.pythonhosted.org/packages/6b/bd/ef5354a8900d534dd149186092efcd86c083b6eb0a635112da84a7769aa2/negspacy-1.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-20 18:31:30",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jenojp",
    "github_project": "negspacy",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "negspacy"
}
        
Elapsed time: 0.07558s