nengolib


Namenengolib JSON
Version 0.5.2 PyPI version JSON
download
home_pagehttps://github.com/arvoelke/nengolib/
SummaryTools for robust dynamics in Nengo
upload_time2019-09-10 14:06:10
maintainer
docs_urlNone
authorAaron R. Voelker
requires_python
licenseFree for non-commercial use (see Nengo license)
keywords neural engineering framework nengo dynamical spiking networks neural dynamics reservoir computing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage
            .. image:: https://arvoelke.github.io/nengolib-docs/_static/logo.png
   :width: 64
   :height: 64
   :target: https://github.com/arvoelke/nengolib
   :alt: Nengolib Logo

.. image:: https://travis-ci.org/arvoelke/nengolib.svg?branch=master
   :target: https://travis-ci.org/arvoelke/nengolib
   :alt: Build Status

.. image:: https://codecov.io/github/arvoelke/nengolib/coverage.svg?branch=master
   :target: https://codecov.io/github/arvoelke/nengolib?branch=master
   :alt: Code Coverage

import nengolib
===============

Additional extensions and tools for modelling dynamical systems in
`Nengo <https://github.com/nengo/nengo>`__.


`Documentation <https://arvoelke.github.io/nengolib-docs/>`__
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

This project's documentation is hosted on GitHub.IO:
https://arvoelke.github.io/nengolib-docs/.


Development
~~~~~~~~~~~

To install the development version of nengolib::

    git clone https://github.com/arvoelke/nengolib
    cd nengolib
    python setup.py develop

Notebooks can be run manually in ``docs/notebooks`` by running::

    pip install jupyter
    jupyter notebook

***************
Release History
***************

0.5.2 (September 10, 2019)
==========================

**Fixed**

- Solved an issue where scipy.misc imports were relocated.
  (`#182 <https://github.com/arvoelke/nengolib/pull/182>`_)

0.5.1 (April 17, 2019)
======================

Tested against Nengo versions 2.2.0-2.8.0. Requires ``nengo<3.0``.

**Fixed**

- A variety of miscellaneous fixes were made to the documentation.
  The ``nengolib.networks.RollingWindow`` documentation references the
  shifted Legendre polynomial equations for ``legendre == True``.
  (`#176 <https://github.com/arvoelke/nengolib/pull/176>`_)

0.5.0 (March 9, 2019)
=====================

Tested against Nengo versions 2.2.0-2.8.0.
We now require ``numpy>=1.13.0``, ``scipy>=0.19.0``, and ``nengo>=2.2.0``.

**Added**

- Added the ``nengolib.RLS()`` recursive least-squares (RLS)
  learning rule. This can be substituted for ``nengo.PES()``.
  See ``notebooks/examples/full_force_learning.ipynb`` for an
  example that uses this to implement spiking FORCE in Nengo.
  (`#133 <https://github.com/arvoelke/nengolib/pull/133>`_)
- Added the ``nengolib.stats.Rd()`` method for quasi-random sampling of
  arbitrarily high-dimensional vectors. It is now the default method for
  scattered sampling of encoders and evaluation points.
  The method can be manually switched back to ``nengolib.stats.Sobol()``.
  (`#153 <https://github.com/arvoelke/nengolib/pull/153>`_)
- Added the ``nengolib.neuron.init_lif(sim, ens)`` helper function
  for initializing the neural state of a ``LIF`` ensemble, from within
  a simulator block, to represent ``0`` uniformly at the start.
  (`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)
- Added ``nengolib.synapses.LegendreDelay`` as an alternative to
  ``nengolib.synapses.PadeDelay`` -- it has an equivalent transfer function
  but a state-space realization corresponding to the shifted
  Legendre basis.
  The network ``nengolib.networks.RollingWindow`` support ``legendre=True``
  to make this system the default realization.
  (`#161 <https://github.com/arvoelke/nengolib/pull/161>`_)


**Fixed**

- Release no longer requires ``pytest``.
  (`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)

0.4.2 (May 18, 2018)
====================

Tested against Nengo versions 2.1.0-2.7.0.

**Added**

- Solving for connection weights by accounting for the neural
  dynamics. To use, pass in ``nengolib.Temporal()`` to
  ``nengo.Connection`` for the ``solver`` parameter.
  Requires ``nengo>=2.5.0``.
  (`#137 <https://github.com/arvoelke/nengolib/pull/137>`_)

0.4.1 (December 5, 2017)
========================

Tested against Nengo versions 2.1.0-2.6.0.

**Fixed**

- Compatible with newest SciPy release (1.0.0).
  (`#130 <https://github.com/arvoelke/nengolib/pull/130>`_)

0.4.0b (June 7, 2017)
=====================

Initial beta release of nengolib.
Tested against Nengo versions 2.1.0-2.4.0.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/arvoelke/nengolib/",
    "name": "nengolib",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Neural Engineering Framework,Nengo,Dynamical Spiking Networks,Neural Dynamics,Reservoir Computing",
    "author": "Aaron R. Voelker",
    "author_email": "arvoelke@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ba/07/2745ae4e43d5cd4cce1c580bc60fb9747b71a775a8cfaf35248774d62ba7/nengolib-0.5.2.tar.gz",
    "platform": "",
    "description": ".. image:: https://arvoelke.github.io/nengolib-docs/_static/logo.png\n   :width: 64\n   :height: 64\n   :target: https://github.com/arvoelke/nengolib\n   :alt: Nengolib Logo\n\n.. image:: https://travis-ci.org/arvoelke/nengolib.svg?branch=master\n   :target: https://travis-ci.org/arvoelke/nengolib\n   :alt: Build Status\n\n.. image:: https://codecov.io/github/arvoelke/nengolib/coverage.svg?branch=master\n   :target: https://codecov.io/github/arvoelke/nengolib?branch=master\n   :alt: Code Coverage\n\nimport nengolib\n===============\n\nAdditional extensions and tools for modelling dynamical systems in\n`Nengo <https://github.com/nengo/nengo>`__.\n\n\n`Documentation <https://arvoelke.github.io/nengolib-docs/>`__\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nThis project's documentation is hosted on GitHub.IO:\nhttps://arvoelke.github.io/nengolib-docs/.\n\n\nDevelopment\n~~~~~~~~~~~\n\nTo install the development version of nengolib::\n\n    git clone https://github.com/arvoelke/nengolib\n    cd nengolib\n    python setup.py develop\n\nNotebooks can be run manually in ``docs/notebooks`` by running::\n\n    pip install jupyter\n    jupyter notebook\n\n***************\nRelease History\n***************\n\n0.5.2 (September 10, 2019)\n==========================\n\n**Fixed**\n\n- Solved an issue where scipy.misc imports were relocated.\n  (`#182 <https://github.com/arvoelke/nengolib/pull/182>`_)\n\n0.5.1 (April 17, 2019)\n======================\n\nTested against Nengo versions 2.2.0-2.8.0. Requires ``nengo<3.0``.\n\n**Fixed**\n\n- A variety of miscellaneous fixes were made to the documentation.\n  The ``nengolib.networks.RollingWindow`` documentation references the\n  shifted Legendre polynomial equations for ``legendre == True``.\n  (`#176 <https://github.com/arvoelke/nengolib/pull/176>`_)\n\n0.5.0 (March 9, 2019)\n=====================\n\nTested against Nengo versions 2.2.0-2.8.0.\nWe now require ``numpy>=1.13.0``, ``scipy>=0.19.0``, and ``nengo>=2.2.0``.\n\n**Added**\n\n- Added the ``nengolib.RLS()`` recursive least-squares (RLS)\n  learning rule. This can be substituted for ``nengo.PES()``.\n  See ``notebooks/examples/full_force_learning.ipynb`` for an\n  example that uses this to implement spiking FORCE in Nengo.\n  (`#133 <https://github.com/arvoelke/nengolib/pull/133>`_)\n- Added the ``nengolib.stats.Rd()`` method for quasi-random sampling of\n  arbitrarily high-dimensional vectors. It is now the default method for\n  scattered sampling of encoders and evaluation points.\n  The method can be manually switched back to ``nengolib.stats.Sobol()``.\n  (`#153 <https://github.com/arvoelke/nengolib/pull/153>`_)\n- Added the ``nengolib.neuron.init_lif(sim, ens)`` helper function\n  for initializing the neural state of a ``LIF`` ensemble, from within\n  a simulator block, to represent ``0`` uniformly at the start.\n  (`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)\n- Added ``nengolib.synapses.LegendreDelay`` as an alternative to\n  ``nengolib.synapses.PadeDelay`` -- it has an equivalent transfer function\n  but a state-space realization corresponding to the shifted\n  Legendre basis.\n  The network ``nengolib.networks.RollingWindow`` support ``legendre=True``\n  to make this system the default realization.\n  (`#161 <https://github.com/arvoelke/nengolib/pull/161>`_)\n\n\n**Fixed**\n\n- Release no longer requires ``pytest``.\n  (`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)\n\n0.4.2 (May 18, 2018)\n====================\n\nTested against Nengo versions 2.1.0-2.7.0.\n\n**Added**\n\n- Solving for connection weights by accounting for the neural\n  dynamics. To use, pass in ``nengolib.Temporal()`` to\n  ``nengo.Connection`` for the ``solver`` parameter.\n  Requires ``nengo>=2.5.0``.\n  (`#137 <https://github.com/arvoelke/nengolib/pull/137>`_)\n\n0.4.1 (December 5, 2017)\n========================\n\nTested against Nengo versions 2.1.0-2.6.0.\n\n**Fixed**\n\n- Compatible with newest SciPy release (1.0.0).\n  (`#130 <https://github.com/arvoelke/nengolib/pull/130>`_)\n\n0.4.0b (June 7, 2017)\n=====================\n\nInitial beta release of nengolib.\nTested against Nengo versions 2.1.0-2.4.0.\n\n\n",
    "bugtrack_url": null,
    "license": "Free for non-commercial use (see Nengo license)",
    "summary": "Tools for robust dynamics in Nengo",
    "version": "0.5.2",
    "split_keywords": [
        "neural engineering framework",
        "nengo",
        "dynamical spiking networks",
        "neural dynamics",
        "reservoir computing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "da0062bbce813d135da3799f4afc26957d942d4ae27085fb0df1bfb57dcf692b",
                "md5": "7a88640931f14262e2e4944edbf6e3a0",
                "sha256": "3d3566d27e6263111a987ee3bd8372ec60417453c03b1e0276c5e95b39ae5831"
            },
            "downloads": -1,
            "filename": "nengolib-0.5.2-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7a88640931f14262e2e4944edbf6e3a0",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 117737,
            "upload_time": "2019-09-10T14:06:00",
            "upload_time_iso_8601": "2019-09-10T14:06:00.749948Z",
            "url": "https://files.pythonhosted.org/packages/da/00/62bbce813d135da3799f4afc26957d942d4ae27085fb0df1bfb57dcf692b/nengolib-0.5.2-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba072745ae4e43d5cd4cce1c580bc60fb9747b71a775a8cfaf35248774d62ba7",
                "md5": "9a927e2bdb9f14fc642bbcb2a04ef382",
                "sha256": "62705dd0b71c0f5bf7209e5067358dea976dcd1944680899defa518f04f4508f"
            },
            "downloads": -1,
            "filename": "nengolib-0.5.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9a927e2bdb9f14fc642bbcb2a04ef382",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4526907,
            "upload_time": "2019-09-10T14:06:10",
            "upload_time_iso_8601": "2019-09-10T14:06:10.779782Z",
            "url": "https://files.pythonhosted.org/packages/ba/07/2745ae4e43d5cd4cce1c580bc60fb9747b71a775a8cfaf35248774d62ba7/nengolib-0.5.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-09-10 14:06:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "arvoelke",
    "github_project": "nengolib",
    "travis_ci": true,
    "coveralls": true,
    "github_actions": false,
    "lcname": "nengolib"
}
        
Elapsed time: 0.03658s