.. image:: https://arvoelke.github.io/nengolib-docs/_static/logo.png
:width: 64
:height: 64
:target: https://github.com/arvoelke/nengolib
:alt: Nengolib Logo
.. image:: https://travis-ci.org/arvoelke/nengolib.svg?branch=master
:target: https://travis-ci.org/arvoelke/nengolib
:alt: Build Status
.. image:: https://codecov.io/github/arvoelke/nengolib/coverage.svg?branch=master
:target: https://codecov.io/github/arvoelke/nengolib?branch=master
:alt: Code Coverage
import nengolib
===============
Additional extensions and tools for modelling dynamical systems in
`Nengo <https://github.com/nengo/nengo>`__.
`Documentation <https://arvoelke.github.io/nengolib-docs/>`__
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This project's documentation is hosted on GitHub.IO:
https://arvoelke.github.io/nengolib-docs/.
Development
~~~~~~~~~~~
To install the development version of nengolib::
git clone https://github.com/arvoelke/nengolib
cd nengolib
python setup.py develop
Notebooks can be run manually in ``docs/notebooks`` by running::
pip install jupyter
jupyter notebook
***************
Release History
***************
0.5.2 (September 10, 2019)
==========================
**Fixed**
- Solved an issue where scipy.misc imports were relocated.
(`#182 <https://github.com/arvoelke/nengolib/pull/182>`_)
0.5.1 (April 17, 2019)
======================
Tested against Nengo versions 2.2.0-2.8.0. Requires ``nengo<3.0``.
**Fixed**
- A variety of miscellaneous fixes were made to the documentation.
The ``nengolib.networks.RollingWindow`` documentation references the
shifted Legendre polynomial equations for ``legendre == True``.
(`#176 <https://github.com/arvoelke/nengolib/pull/176>`_)
0.5.0 (March 9, 2019)
=====================
Tested against Nengo versions 2.2.0-2.8.0.
We now require ``numpy>=1.13.0``, ``scipy>=0.19.0``, and ``nengo>=2.2.0``.
**Added**
- Added the ``nengolib.RLS()`` recursive least-squares (RLS)
learning rule. This can be substituted for ``nengo.PES()``.
See ``notebooks/examples/full_force_learning.ipynb`` for an
example that uses this to implement spiking FORCE in Nengo.
(`#133 <https://github.com/arvoelke/nengolib/pull/133>`_)
- Added the ``nengolib.stats.Rd()`` method for quasi-random sampling of
arbitrarily high-dimensional vectors. It is now the default method for
scattered sampling of encoders and evaluation points.
The method can be manually switched back to ``nengolib.stats.Sobol()``.
(`#153 <https://github.com/arvoelke/nengolib/pull/153>`_)
- Added the ``nengolib.neuron.init_lif(sim, ens)`` helper function
for initializing the neural state of a ``LIF`` ensemble, from within
a simulator block, to represent ``0`` uniformly at the start.
(`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)
- Added ``nengolib.synapses.LegendreDelay`` as an alternative to
``nengolib.synapses.PadeDelay`` -- it has an equivalent transfer function
but a state-space realization corresponding to the shifted
Legendre basis.
The network ``nengolib.networks.RollingWindow`` support ``legendre=True``
to make this system the default realization.
(`#161 <https://github.com/arvoelke/nengolib/pull/161>`_)
**Fixed**
- Release no longer requires ``pytest``.
(`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)
0.4.2 (May 18, 2018)
====================
Tested against Nengo versions 2.1.0-2.7.0.
**Added**
- Solving for connection weights by accounting for the neural
dynamics. To use, pass in ``nengolib.Temporal()`` to
``nengo.Connection`` for the ``solver`` parameter.
Requires ``nengo>=2.5.0``.
(`#137 <https://github.com/arvoelke/nengolib/pull/137>`_)
0.4.1 (December 5, 2017)
========================
Tested against Nengo versions 2.1.0-2.6.0.
**Fixed**
- Compatible with newest SciPy release (1.0.0).
(`#130 <https://github.com/arvoelke/nengolib/pull/130>`_)
0.4.0b (June 7, 2017)
=====================
Initial beta release of nengolib.
Tested against Nengo versions 2.1.0-2.4.0.
Raw data
{
"_id": null,
"home_page": "https://github.com/arvoelke/nengolib/",
"name": "nengolib",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Neural Engineering Framework,Nengo,Dynamical Spiking Networks,Neural Dynamics,Reservoir Computing",
"author": "Aaron R. Voelker",
"author_email": "arvoelke@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/ba/07/2745ae4e43d5cd4cce1c580bc60fb9747b71a775a8cfaf35248774d62ba7/nengolib-0.5.2.tar.gz",
"platform": "",
"description": ".. image:: https://arvoelke.github.io/nengolib-docs/_static/logo.png\n :width: 64\n :height: 64\n :target: https://github.com/arvoelke/nengolib\n :alt: Nengolib Logo\n\n.. image:: https://travis-ci.org/arvoelke/nengolib.svg?branch=master\n :target: https://travis-ci.org/arvoelke/nengolib\n :alt: Build Status\n\n.. image:: https://codecov.io/github/arvoelke/nengolib/coverage.svg?branch=master\n :target: https://codecov.io/github/arvoelke/nengolib?branch=master\n :alt: Code Coverage\n\nimport nengolib\n===============\n\nAdditional extensions and tools for modelling dynamical systems in\n`Nengo <https://github.com/nengo/nengo>`__.\n\n\n`Documentation <https://arvoelke.github.io/nengolib-docs/>`__\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nThis project's documentation is hosted on GitHub.IO:\nhttps://arvoelke.github.io/nengolib-docs/.\n\n\nDevelopment\n~~~~~~~~~~~\n\nTo install the development version of nengolib::\n\n git clone https://github.com/arvoelke/nengolib\n cd nengolib\n python setup.py develop\n\nNotebooks can be run manually in ``docs/notebooks`` by running::\n\n pip install jupyter\n jupyter notebook\n\n***************\nRelease History\n***************\n\n0.5.2 (September 10, 2019)\n==========================\n\n**Fixed**\n\n- Solved an issue where scipy.misc imports were relocated.\n (`#182 <https://github.com/arvoelke/nengolib/pull/182>`_)\n\n0.5.1 (April 17, 2019)\n======================\n\nTested against Nengo versions 2.2.0-2.8.0. Requires ``nengo<3.0``.\n\n**Fixed**\n\n- A variety of miscellaneous fixes were made to the documentation.\n The ``nengolib.networks.RollingWindow`` documentation references the\n shifted Legendre polynomial equations for ``legendre == True``.\n (`#176 <https://github.com/arvoelke/nengolib/pull/176>`_)\n\n0.5.0 (March 9, 2019)\n=====================\n\nTested against Nengo versions 2.2.0-2.8.0.\nWe now require ``numpy>=1.13.0``, ``scipy>=0.19.0``, and ``nengo>=2.2.0``.\n\n**Added**\n\n- Added the ``nengolib.RLS()`` recursive least-squares (RLS)\n learning rule. This can be substituted for ``nengo.PES()``.\n See ``notebooks/examples/full_force_learning.ipynb`` for an\n example that uses this to implement spiking FORCE in Nengo.\n (`#133 <https://github.com/arvoelke/nengolib/pull/133>`_)\n- Added the ``nengolib.stats.Rd()`` method for quasi-random sampling of\n arbitrarily high-dimensional vectors. It is now the default method for\n scattered sampling of encoders and evaluation points.\n The method can be manually switched back to ``nengolib.stats.Sobol()``.\n (`#153 <https://github.com/arvoelke/nengolib/pull/153>`_)\n- Added the ``nengolib.neuron.init_lif(sim, ens)`` helper function\n for initializing the neural state of a ``LIF`` ensemble, from within\n a simulator block, to represent ``0`` uniformly at the start.\n (`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)\n- Added ``nengolib.synapses.LegendreDelay`` as an alternative to\n ``nengolib.synapses.PadeDelay`` -- it has an equivalent transfer function\n but a state-space realization corresponding to the shifted\n Legendre basis.\n The network ``nengolib.networks.RollingWindow`` support ``legendre=True``\n to make this system the default realization.\n (`#161 <https://github.com/arvoelke/nengolib/pull/161>`_)\n\n\n**Fixed**\n\n- Release no longer requires ``pytest``.\n (`#156 <https://github.com/arvoelke/nengolib/pull/156>`_)\n\n0.4.2 (May 18, 2018)\n====================\n\nTested against Nengo versions 2.1.0-2.7.0.\n\n**Added**\n\n- Solving for connection weights by accounting for the neural\n dynamics. To use, pass in ``nengolib.Temporal()`` to\n ``nengo.Connection`` for the ``solver`` parameter.\n Requires ``nengo>=2.5.0``.\n (`#137 <https://github.com/arvoelke/nengolib/pull/137>`_)\n\n0.4.1 (December 5, 2017)\n========================\n\nTested against Nengo versions 2.1.0-2.6.0.\n\n**Fixed**\n\n- Compatible with newest SciPy release (1.0.0).\n (`#130 <https://github.com/arvoelke/nengolib/pull/130>`_)\n\n0.4.0b (June 7, 2017)\n=====================\n\nInitial beta release of nengolib.\nTested against Nengo versions 2.1.0-2.4.0.\n\n\n",
"bugtrack_url": null,
"license": "Free for non-commercial use (see Nengo license)",
"summary": "Tools for robust dynamics in Nengo",
"version": "0.5.2",
"split_keywords": [
"neural engineering framework",
"nengo",
"dynamical spiking networks",
"neural dynamics",
"reservoir computing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "da0062bbce813d135da3799f4afc26957d942d4ae27085fb0df1bfb57dcf692b",
"md5": "7a88640931f14262e2e4944edbf6e3a0",
"sha256": "3d3566d27e6263111a987ee3bd8372ec60417453c03b1e0276c5e95b39ae5831"
},
"downloads": -1,
"filename": "nengolib-0.5.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "7a88640931f14262e2e4944edbf6e3a0",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 117737,
"upload_time": "2019-09-10T14:06:00",
"upload_time_iso_8601": "2019-09-10T14:06:00.749948Z",
"url": "https://files.pythonhosted.org/packages/da/00/62bbce813d135da3799f4afc26957d942d4ae27085fb0df1bfb57dcf692b/nengolib-0.5.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ba072745ae4e43d5cd4cce1c580bc60fb9747b71a775a8cfaf35248774d62ba7",
"md5": "9a927e2bdb9f14fc642bbcb2a04ef382",
"sha256": "62705dd0b71c0f5bf7209e5067358dea976dcd1944680899defa518f04f4508f"
},
"downloads": -1,
"filename": "nengolib-0.5.2.tar.gz",
"has_sig": false,
"md5_digest": "9a927e2bdb9f14fc642bbcb2a04ef382",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 4526907,
"upload_time": "2019-09-10T14:06:10",
"upload_time_iso_8601": "2019-09-10T14:06:10.779782Z",
"url": "https://files.pythonhosted.org/packages/ba/07/2745ae4e43d5cd4cce1c580bc60fb9747b71a775a8cfaf35248774d62ba7/nengolib-0.5.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2019-09-10 14:06:10",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "arvoelke",
"github_project": "nengolib",
"travis_ci": true,
"coveralls": true,
"github_actions": false,
"lcname": "nengolib"
}