neo4j-haystack


Nameneo4j-haystack JSON
Version 2.0.1 PyPI version JSON
download
home_page
SummaryIntegration of Neo4j graph database with Haystack
upload_time2024-01-15 20:37:23
maintainer
docs_urlNone
author
requires_python>=3.8
license
keywords documentstore haystack neo4j semantic-search
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">neo4j-haystack</h1>

<p align="center">A <a href="https://docs.haystack.deepset.ai/docs/document_store"><i>Haystack</i></a> Document Store for <a href="https://neo4j.com/"><i>Neo4j</i></a>.</p>

<p align="center">
  <a href="https://github.com/prosto/neo4j-haystack/actions?query=workflow%3Aci">
    <img alt="ci" src="https://github.com/prosto/neo4j-haystack/workflows/ci/badge.svg" />
  </a>
  <a href="https://prosto.github.io/neo4j-haystack/">
    <img alt="documentation" src="https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat" />
  </a>
  <a href="https://pypi.org/project/neo4j-haystack/">
    <img alt="pypi version" src="https://img.shields.io/pypi/v/neo4j-haystack.svg" />
  </a>
  <a href="https://img.shields.io/pypi/pyversions/neo4j-haystack.svg">
    <img alt="python version" src="https://img.shields.io/pypi/pyversions/neo4j-haystack.svg" />
  </a>
</p>

----

**Table of Contents**

- [Overview](#overview)
- [Usage](#usage)
- [Installation](#installation)
- [License](#license)

## Overview

An integration of [Neo4j](https://neo4j.com/) graph database with [Haystack v2.0](https://docs.haystack.deepset.ai/v2.0/docs/intro)
by [deepset](https://www.deepset.ai). In Neo4j [Vector search index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/)
is being used for storing document embeddings and dense retrievals.

The library allows using Neo4j as a [DocumentStore](https://docs.haystack.deepset.ai/v2.0/docs/document-store), and implements the required [Protocol](https://docs.haystack.deepset.ai/v2.0/docs/document-store#documentstore-protocol) methods. You can start working with the implementation by importing it from `neo4_haystack` package:

```python
from neo4_haystack import Neo4jDocumentStore
```

In addition to the `Neo4jDocumentStore` the library includes the following haystack components which can be used in a pipeline:

- [Neo4jEmbeddingRetriever](https://prosto.github.io/neo4j-haystack/reference/neo4j_retriever/#neo4j_haystack.components.neo4j_retriever.Neo4jEmbeddingRetriever) - is a typical [retriever component](https://docs.haystack.deepset.ai/v2.0/docs/retrievers) which can be used to query vector store index and find related Documents. The component uses `Neo4jDocumentStore` to query embeddings.
- [Neo4jDynamicDocumentRetriever](https://prosto.github.io/neo4j-haystack/reference/neo4j_retriever/#neo4j_haystack.components.neo4j_retriever.Neo4jDynamicDocumentRetriever) is also a retriever component in a sense that it can be used to query Documents in Neo4j. However it is decoupled from `Neo4jDocumentStore` and allows to run arbitrary [Cypher query](https://neo4j.com/docs/cypher-manual/current/queries/) to extract documents. Practically it is possible to query Neo4j same way `Neo4jDocumentStore` does, including vector search.

The `neo4j-haystack` library uses [Python Driver](https://neo4j.com/docs/api/python-driver/current/api.html#api-documentation) and
[Cypher Queries](https://neo4j.com/docs/cypher-manual/current/introduction/) to interact with Neo4j database and hide all complexities under the hood.

`Neo4jDocumentStore` will store Documents as Graph nodes in Neo4j. Embeddings are stored as part of the node, but indexing and querying of vector embeddings using ANN is managed by a dedicated [Vector Index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/).

```text
                                   +-----------------------------+
                                   |       Neo4j Database        |
                                   +-----------------------------+
                                   |                             |
                                   |      +----------------+     |
                                   |      |    Document    |     |
                write_documents    |      +----------------+     |
          +------------------------+----->|   properties   |     |
          |                        |      |                |     |
+---------+----------+             |      |   embedding    |     |
|                    |             |      +--------+-------+     |
| Neo4jDocumentStore |             |               |             |
|                    |             |               |index/query  |
+---------+----------+             |               |             |
          |                        |      +--------+--------+    |
          |                        |      |  Vector Index   |    |
          +----------------------->|      |                 |    |
               query_embeddings    |      | (for embedding) |    |
                                   |      +-----------------+    |
                                   |                             |
                                   +-----------------------------+
```

In the above diagram:

- `Document` is a Neo4j node (with "Document" label)
- `properties` are Document [attributes](https://docs.haystack.deepset.ai/docs/documents_answers_labels#attributes) stored as part of the node.
- `embedding` is also a property of the Document node (just shown separately in the diagram for clarity) which is a vector of type `LIST[FLOAT]`.
- `Vector Index` is where embeddings are getting indexed by Neo4j as soon as those are updated in Document nodes.

## Installation

`neo4j-haystack` can be installed as any other Python library, using pip:

```bash
pip install --upgrade pip # optional
pip install neo4j-haystack
```

## Usage

Once installed, you can start using `Neo4jDocumentStore` as any other document stores that support embeddings.

```python
from neo4j_haystack import Neo4jDocumentStore

document_store = Neo4jDocumentStore(
    url="bolt://localhost:7687",
    username="neo4j",
    password="passw0rd",
    database="neo4j",
    embedding_dim=384,
    embedding_field="embedding",
    index="document-embeddings", # The name of the Vector Index in Neo4j
    node_label="Document", # Providing a label to Neo4j nodes which store Documents
)
```

Assuming there is a list of documents available you can write/index those in Neo4j, e.g.:

```python
documents: List[Document] = ...
document_store.write_documents(documents)
```

The full list of parameters accepted by `Neo4jDocumentStore` can be found in
[API documentation](https://prosto.github.io/neo4j-haystack/reference/neo4j_store/#neo4j_haystack.document_stores.neo4j_store.Neo4jDocumentStore.__init__).

Please notice you will need to have a running instance of Neo4j database (in-memory version of Neo4j is not supported). There are several options available:

- [Docker](https://neo4j.com/docs/operations-manual/5/docker/), other options available in the same Operations Manual
- [AuraDB](https://neo4j.com/cloud/platform/aura-graph-database/) - a fully managed Cloud Instance of Neo4j
- [Neo4j Desktop](https://neo4j.com/docs/desktop-manual/current/) client application

The simplest way to start database locally will be with Docker container:

```bash
docker run \
    --restart always \
    --publish=7474:7474 --publish=7687:7687 \
    --env NEO4J_AUTH=neo4j/passw0rd \
    neo4j:5.15.0
```

### Retrieving documents

`Neo4jEmbeddingRetriever` component can be used to retrieve documents from Neo4j by querying vector index using an embedded query. Below is a pipeline which finds documents using query embedding s well as [metadata filtering](https://docs.haystack.deepset.ai/v2.0/docs/metadata-filtering):

```python
from haystack import Document, Pipeline
from haystack.components.embedders import SentenceTransformersTextEmbedder
from neo4j_haystack import Neo4jEmbeddingRetriever, Neo4jDocumentStore

model_name = "sentence-transformers/all-MiniLM-L6-v2"

document_store = Neo4jDocumentStore(
    url="bolt://localhost:7687",
    username="neo4j",
    password="passw0rd",
    database="neo4j",
    embedding_dim=384,
    index="document-embeddings",
)

pipeline = Pipeline()
pipeline.add_component("text_embedder", SentenceTransformersTextEmbedder(model_name_or_path=model_name))
pipeline.add_component("retriever", Neo4jEmbeddingRetriever(document_store=document_store))
pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

result = pipeline.run(
    data={
        "text_embedder": {"text": "Query to be embedded"},
        "retriever": {
            "top_k": 5,
            "filters": {"field": "release_date", "operator": "==", "value": "2018-12-09"},
        },
    }
)

documents: List[Document] = result["retriever"]["documents"]
```

### Retrieving documents using Cypher

`Neo4jDynamicDocumentRetriever` is a flexible retriever component which can run a Cypher query to obtain documents. The above example of `Neo4jEmbeddingRetriever` could be rewritten without usage of `Neo4jDocumentStore`:

```python
from haystack import Document, Pipeline
from haystack.components.embedders import SentenceTransformersTextEmbedder

from neo4j_haystack import Neo4jClientConfig, Neo4jDynamicDocumentRetriever

client_config = Neo4jClientConfig(
    url="bolt://localhost:7687",
    username="neo4j",
    password="passw0rd",
    database="neo4j",
)

cypher_query = """
            CALL db.index.vector.queryNodes($index, $top_k, $query_embedding)
            YIELD node as doc, score
            MATCH (doc) WHERE doc.release_date = $release_date
            RETURN doc{.*, score}, score
            ORDER BY score DESC LIMIT $top_k
        """

embedder = SentenceTransformersTextEmbedder(model_name_or_path="sentence-transformers/all-MiniLM-L6-v2")
retriever = Neo4jDynamicDocumentRetriever(
    client_config=client_config, runtime_parameters=["query_embedding"], doc_node_name="doc"
)

pipeline = Pipeline()
pipeline.add_component("text_embedder", embedder)
pipeline.add_component("retriever", retriever)
pipeline.connect("text_embedder.embedding", "retriever.query_embedding")

result = pipeline.run(
    data={
        "text_embedder": {"text": "Query to be embedded"},
        "retriever": {
            "query": cypher_query,
            "parameters": {"index": "document-embeddings", "top_k": 5, "release_date": "2018-12-09"},
        },
    }
)

documents: List[Document] = result["retriever"]["documents"]
```

Please notice how query parameters are being used in the `cypher_query`:

- `runtime_parameters` is a list of parameter names which are going to be input slots when connecting components
    in a pipeline. In our case `query_embedding` input is connected to the `text_embedder.embedding` output.
- `pipeline.run` specifies additional parameters to the `retriever` component which can be referenced in the
    `cypher_query`, e.g. `top_k`.

## License

`neo4j-haystack` is distributed under the terms of the [MIT](https://spdx.org/licenses/MIT.html) license.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "neo4j-haystack",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "DocumentStore,Haystack,neo4j,semantic-search",
    "author": "",
    "author_email": "Sergey Bondarenco <sergey.bondarenco@outlook.com>",
    "download_url": "https://files.pythonhosted.org/packages/a3/32/0beab14a9ca7050a42a5eb648934663a726cde6fe68f54d2b46f7151a3bd/neo4j_haystack-2.0.1.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">neo4j-haystack</h1>\n\n<p align=\"center\">A <a href=\"https://docs.haystack.deepset.ai/docs/document_store\"><i>Haystack</i></a> Document Store for <a href=\"https://neo4j.com/\"><i>Neo4j</i></a>.</p>\n\n<p align=\"center\">\n  <a href=\"https://github.com/prosto/neo4j-haystack/actions?query=workflow%3Aci\">\n    <img alt=\"ci\" src=\"https://github.com/prosto/neo4j-haystack/workflows/ci/badge.svg\" />\n  </a>\n  <a href=\"https://prosto.github.io/neo4j-haystack/\">\n    <img alt=\"documentation\" src=\"https://img.shields.io/badge/docs-mkdocs%20material-blue.svg?style=flat\" />\n  </a>\n  <a href=\"https://pypi.org/project/neo4j-haystack/\">\n    <img alt=\"pypi version\" src=\"https://img.shields.io/pypi/v/neo4j-haystack.svg\" />\n  </a>\n  <a href=\"https://img.shields.io/pypi/pyversions/neo4j-haystack.svg\">\n    <img alt=\"python version\" src=\"https://img.shields.io/pypi/pyversions/neo4j-haystack.svg\" />\n  </a>\n</p>\n\n----\n\n**Table of Contents**\n\n- [Overview](#overview)\n- [Usage](#usage)\n- [Installation](#installation)\n- [License](#license)\n\n## Overview\n\nAn integration of [Neo4j](https://neo4j.com/) graph database with [Haystack v2.0](https://docs.haystack.deepset.ai/v2.0/docs/intro)\nby [deepset](https://www.deepset.ai). In Neo4j [Vector search index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/)\nis being used for storing document embeddings and dense retrievals.\n\nThe library allows using Neo4j as a [DocumentStore](https://docs.haystack.deepset.ai/v2.0/docs/document-store), and implements the required [Protocol](https://docs.haystack.deepset.ai/v2.0/docs/document-store#documentstore-protocol) methods. You can start working with the implementation by importing it from `neo4_haystack` package:\n\n```python\nfrom neo4_haystack import Neo4jDocumentStore\n```\n\nIn addition to the `Neo4jDocumentStore` the library includes the following haystack components which can be used in a pipeline:\n\n- [Neo4jEmbeddingRetriever](https://prosto.github.io/neo4j-haystack/reference/neo4j_retriever/#neo4j_haystack.components.neo4j_retriever.Neo4jEmbeddingRetriever) - is a typical [retriever component](https://docs.haystack.deepset.ai/v2.0/docs/retrievers) which can be used to query vector store index and find related Documents. The component uses `Neo4jDocumentStore` to query embeddings.\n- [Neo4jDynamicDocumentRetriever](https://prosto.github.io/neo4j-haystack/reference/neo4j_retriever/#neo4j_haystack.components.neo4j_retriever.Neo4jDynamicDocumentRetriever) is also a retriever component in a sense that it can be used to query Documents in Neo4j. However it is decoupled from `Neo4jDocumentStore` and allows to run arbitrary [Cypher query](https://neo4j.com/docs/cypher-manual/current/queries/) to extract documents. Practically it is possible to query Neo4j same way `Neo4jDocumentStore` does, including vector search.\n\nThe `neo4j-haystack` library uses [Python Driver](https://neo4j.com/docs/api/python-driver/current/api.html#api-documentation) and\n[Cypher Queries](https://neo4j.com/docs/cypher-manual/current/introduction/) to interact with Neo4j database and hide all complexities under the hood.\n\n`Neo4jDocumentStore` will store Documents as Graph nodes in Neo4j. Embeddings are stored as part of the node, but indexing and querying of vector embeddings using ANN is managed by a dedicated [Vector Index](https://neo4j.com/docs/cypher-manual/current/indexes-for-vector-search/).\n\n```text\n                                   +-----------------------------+\n                                   |       Neo4j Database        |\n                                   +-----------------------------+\n                                   |                             |\n                                   |      +----------------+     |\n                                   |      |    Document    |     |\n                write_documents    |      +----------------+     |\n          +------------------------+----->|   properties   |     |\n          |                        |      |                |     |\n+---------+----------+             |      |   embedding    |     |\n|                    |             |      +--------+-------+     |\n| Neo4jDocumentStore |             |               |             |\n|                    |             |               |index/query  |\n+---------+----------+             |               |             |\n          |                        |      +--------+--------+    |\n          |                        |      |  Vector Index   |    |\n          +----------------------->|      |                 |    |\n               query_embeddings    |      | (for embedding) |    |\n                                   |      +-----------------+    |\n                                   |                             |\n                                   +-----------------------------+\n```\n\nIn the above diagram:\n\n- `Document` is a Neo4j node (with \"Document\" label)\n- `properties` are Document [attributes](https://docs.haystack.deepset.ai/docs/documents_answers_labels#attributes) stored as part of the node.\n- `embedding` is also a property of the Document node (just shown separately in the diagram for clarity) which is a vector of type `LIST[FLOAT]`.\n- `Vector Index` is where embeddings are getting indexed by Neo4j as soon as those are updated in Document nodes.\n\n## Installation\n\n`neo4j-haystack` can be installed as any other Python library, using pip:\n\n```bash\npip install --upgrade pip # optional\npip install neo4j-haystack\n```\n\n## Usage\n\nOnce installed, you can start using `Neo4jDocumentStore` as any other document stores that support embeddings.\n\n```python\nfrom neo4j_haystack import Neo4jDocumentStore\n\ndocument_store = Neo4jDocumentStore(\n    url=\"bolt://localhost:7687\",\n    username=\"neo4j\",\n    password=\"passw0rd\",\n    database=\"neo4j\",\n    embedding_dim=384,\n    embedding_field=\"embedding\",\n    index=\"document-embeddings\", # The name of the Vector Index in Neo4j\n    node_label=\"Document\", # Providing a label to Neo4j nodes which store Documents\n)\n```\n\nAssuming there is a list of documents available you can write/index those in Neo4j, e.g.:\n\n```python\ndocuments: List[Document] = ...\ndocument_store.write_documents(documents)\n```\n\nThe full list of parameters accepted by `Neo4jDocumentStore` can be found in\n[API documentation](https://prosto.github.io/neo4j-haystack/reference/neo4j_store/#neo4j_haystack.document_stores.neo4j_store.Neo4jDocumentStore.__init__).\n\nPlease notice you will need to have a running instance of Neo4j database (in-memory version of Neo4j is not supported). There are several options available:\n\n- [Docker](https://neo4j.com/docs/operations-manual/5/docker/), other options available in the same Operations Manual\n- [AuraDB](https://neo4j.com/cloud/platform/aura-graph-database/) - a fully managed Cloud Instance of Neo4j\n- [Neo4j Desktop](https://neo4j.com/docs/desktop-manual/current/) client application\n\nThe simplest way to start database locally will be with Docker container:\n\n```bash\ndocker run \\\n    --restart always \\\n    --publish=7474:7474 --publish=7687:7687 \\\n    --env NEO4J_AUTH=neo4j/passw0rd \\\n    neo4j:5.15.0\n```\n\n### Retrieving documents\n\n`Neo4jEmbeddingRetriever` component can be used to retrieve documents from Neo4j by querying vector index using an embedded query. Below is a pipeline which finds documents using query embedding s well as [metadata filtering](https://docs.haystack.deepset.ai/v2.0/docs/metadata-filtering):\n\n```python\nfrom haystack import Document, Pipeline\nfrom haystack.components.embedders import SentenceTransformersTextEmbedder\nfrom neo4j_haystack import Neo4jEmbeddingRetriever, Neo4jDocumentStore\n\nmodel_name = \"sentence-transformers/all-MiniLM-L6-v2\"\n\ndocument_store = Neo4jDocumentStore(\n    url=\"bolt://localhost:7687\",\n    username=\"neo4j\",\n    password=\"passw0rd\",\n    database=\"neo4j\",\n    embedding_dim=384,\n    index=\"document-embeddings\",\n)\n\npipeline = Pipeline()\npipeline.add_component(\"text_embedder\", SentenceTransformersTextEmbedder(model_name_or_path=model_name))\npipeline.add_component(\"retriever\", Neo4jEmbeddingRetriever(document_store=document_store))\npipeline.connect(\"text_embedder.embedding\", \"retriever.query_embedding\")\n\nresult = pipeline.run(\n    data={\n        \"text_embedder\": {\"text\": \"Query to be embedded\"},\n        \"retriever\": {\n            \"top_k\": 5,\n            \"filters\": {\"field\": \"release_date\", \"operator\": \"==\", \"value\": \"2018-12-09\"},\n        },\n    }\n)\n\ndocuments: List[Document] = result[\"retriever\"][\"documents\"]\n```\n\n### Retrieving documents using Cypher\n\n`Neo4jDynamicDocumentRetriever` is a flexible retriever component which can run a Cypher query to obtain documents. The above example of `Neo4jEmbeddingRetriever` could be rewritten without usage of `Neo4jDocumentStore`:\n\n```python\nfrom haystack import Document, Pipeline\nfrom haystack.components.embedders import SentenceTransformersTextEmbedder\n\nfrom neo4j_haystack import Neo4jClientConfig, Neo4jDynamicDocumentRetriever\n\nclient_config = Neo4jClientConfig(\n    url=\"bolt://localhost:7687\",\n    username=\"neo4j\",\n    password=\"passw0rd\",\n    database=\"neo4j\",\n)\n\ncypher_query = \"\"\"\n            CALL db.index.vector.queryNodes($index, $top_k, $query_embedding)\n            YIELD node as doc, score\n            MATCH (doc) WHERE doc.release_date = $release_date\n            RETURN doc{.*, score}, score\n            ORDER BY score DESC LIMIT $top_k\n        \"\"\"\n\nembedder = SentenceTransformersTextEmbedder(model_name_or_path=\"sentence-transformers/all-MiniLM-L6-v2\")\nretriever = Neo4jDynamicDocumentRetriever(\n    client_config=client_config, runtime_parameters=[\"query_embedding\"], doc_node_name=\"doc\"\n)\n\npipeline = Pipeline()\npipeline.add_component(\"text_embedder\", embedder)\npipeline.add_component(\"retriever\", retriever)\npipeline.connect(\"text_embedder.embedding\", \"retriever.query_embedding\")\n\nresult = pipeline.run(\n    data={\n        \"text_embedder\": {\"text\": \"Query to be embedded\"},\n        \"retriever\": {\n            \"query\": cypher_query,\n            \"parameters\": {\"index\": \"document-embeddings\", \"top_k\": 5, \"release_date\": \"2018-12-09\"},\n        },\n    }\n)\n\ndocuments: List[Document] = result[\"retriever\"][\"documents\"]\n```\n\nPlease notice how query parameters are being used in the `cypher_query`:\n\n- `runtime_parameters` is a list of parameter names which are going to be input slots when connecting components\n    in a pipeline. In our case `query_embedding` input is connected to the `text_embedder.embedding` output.\n- `pipeline.run` specifies additional parameters to the `retriever` component which can be referenced in the\n    `cypher_query`, e.g. `top_k`.\n\n## License\n\n`neo4j-haystack` is distributed under the terms of the [MIT](https://spdx.org/licenses/MIT.html) license.\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Integration of Neo4j graph database with Haystack",
    "version": "2.0.1",
    "project_urls": {
        "Documentation": "https://prosto.github.io/neo4j-haystack",
        "Issues": "https://github.com/prosto/neo4j-haystack/issues",
        "Source": "https://github.com/prosto/neo4j-haystack"
    },
    "split_keywords": [
        "documentstore",
        "haystack",
        "neo4j",
        "semantic-search"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "761a2e2b9da2cb51c1e18c99ab22fb97ca63cffa556b40b798f731efbc374ffb",
                "md5": "405e9c726c966e00f69a89131945d7dd",
                "sha256": "b03f21102ec739b7a52580cc3e952ae82da7e2105f2b72e802b73648fb38c7cf"
            },
            "downloads": -1,
            "filename": "neo4j_haystack-2.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "405e9c726c966e00f69a89131945d7dd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 38560,
            "upload_time": "2024-01-15T20:37:21",
            "upload_time_iso_8601": "2024-01-15T20:37:21.532574Z",
            "url": "https://files.pythonhosted.org/packages/76/1a/2e2b9da2cb51c1e18c99ab22fb97ca63cffa556b40b798f731efbc374ffb/neo4j_haystack-2.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a3320beab14a9ca7050a42a5eb648934663a726cde6fe68f54d2b46f7151a3bd",
                "md5": "59f700ec3137c47dd552673770a1dd62",
                "sha256": "ff2a04cedd8d3d64067aff3deb84f8923772996fe02971f02e58396c49d1b7f1"
            },
            "downloads": -1,
            "filename": "neo4j_haystack-2.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "59f700ec3137c47dd552673770a1dd62",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 578784,
            "upload_time": "2024-01-15T20:37:23",
            "upload_time_iso_8601": "2024-01-15T20:37:23.071467Z",
            "url": "https://files.pythonhosted.org/packages/a3/32/0beab14a9ca7050a42a5eb648934663a726cde6fe68f54d2b46f7151a3bd/neo4j_haystack-2.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-15 20:37:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "prosto",
    "github_project": "neo4j-haystack",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "neo4j-haystack"
}
        
Elapsed time: 0.18769s