Name | nephased JSON |
Version |
0.0.31
JSON |
| download |
home_page | None |
Summary | A BERT-based text sentiment classification pipeline for Nepali |
upload_time | 2025-02-09 16:56:41 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.10 |
license | MIT |
keywords |
nlp
transformers
bert
nepali
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# nephased
> [!Warning]
> This section contains vulgar words
`Nephased` provides a BERT-based classification pipeline
for detecting Nepali text sentiment
## Installation
From TestPyPI:
```bash
pip install nephased
```
Or you can use the Nephased(finetune of distilbert-base-nepali) from [huggingface](https://huggingface.co/Vyke2000/Nephased)
## Usage
Import `Nephased` module using the following command.
```python
from nephased import Nephased
```
Initialize Nephased
```python
clf = Nephased()
```
- You can pass a single string:
```python
>>> clf.predict("थुक्क पैसा मा बिकने हीजडा")
'PROFANITY_0'
```
- or, a list of string:
```python
>>> clf.predict(["राडिको छोरोको शासन धेर दिन टिक्दैन |", "सुरु मा चाहिँ तैले यो देश छोडनु पर्यो |", "एसको घरमा आगो लाहिदे ।"])
['PROFANITY_1', 'GENERAL', 'VIOLENCE']
```
## About Output
Nephased can distinguish between 4 categories:
- GENERAL : Instance without any profanity or violence.
- PROFANITY_0 : Instance including rude, bad or slander which are not very harsh but offensive words used on day-to-day lives in Nepal.
- PROFANITY_1 : Instance including swear or curse words which are very harsh
- VIOLENCE : Instance including physical assualt or rape and pyromaniac act.
The guidelines for segragating such sentiments are on [NepsaGuidelines](https://github.com/oya163/nepali-sentiment-analysis/blob/master/guidelines/NepsaGuidelines_2020.pdf)
> [!NOTE]
> Nephased is trained on [NepSa](https://github.com/oya163/nepali-sentiment-analysis/blob/master/data/nepcls/csv/ss_ac_at_txt_unbal.csv) dataset \
> By default Nephased preprocesses the input:
>
> - stemming using [nepali-stemmer](https://github.com/oya163/nepali-stemmer)
> - lowering case, punctuation and stopwords removal \
> you can choose to not preprocess text when initializing Nephased
>
> ```python
> clf = nephased(preprocess_text = False)
> ```
Raw data
{
"_id": null,
"home_page": null,
"name": "nephased",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "nlp, transformers, bert, nepali",
"author": null,
"author_email": "Angel Tamang <tamangangel2057@gmail.com>, Aadarsha Regmi <aadarsha.regmi11@gmail.com>, Gaurav Maharjan <gauravmaharjan1@gmail.com>, Anil Bhatta <bhattaanil1234@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/47/87/e3f9044b115db23c64c90deacd3a97a356d4288d6f7f44d5d185a14a3157/nephased-0.0.31.tar.gz",
"platform": null,
"description": "# nephased\n\n> [!Warning]\n> This section contains vulgar words\n\n`Nephased` provides a BERT-based classification pipeline\nfor detecting Nepali text sentiment\n\n## Installation\n\nFrom TestPyPI:\n\n```bash\npip install nephased\n```\n\nOr you can use the Nephased(finetune of distilbert-base-nepali) from [huggingface](https://huggingface.co/Vyke2000/Nephased)\n\n## Usage\n\nImport `Nephased` module using the following command.\n\n```python\nfrom nephased import Nephased\n```\n\nInitialize Nephased\n\n```python\nclf = Nephased()\n```\n\n- You can pass a single string:\n\n```python\n>>> clf.predict(\"\u0925\u0941\u0915\u094d\u0915 \u092a\u0948\u0938\u093e \u092e\u093e \u092c\u093f\u0915\u0928\u0947 \u0939\u0940\u091c\u0921\u093e\")\n'PROFANITY_0'\n```\n\n- or, a list of string:\n\n```python\n>>> clf.predict([\"\u0930\u093e\u0921\u093f\u0915\u094b \u091b\u094b\u0930\u094b\u0915\u094b \u0936\u093e\u0938\u0928 \u0927\u0947\u0930 \u0926\u093f\u0928 \u091f\u093f\u0915\u094d\u0926\u0948\u0928 |\", \"\u0938\u0941\u0930\u0941 \u092e\u093e \u091a\u093e\u0939\u093f\u0901 \u0924\u0948\u0932\u0947 \u092f\u094b \u0926\u0947\u0936 \u091b\u094b\u0921\u0928\u0941 \u092a\u0930\u094d\u092f\u094b |\", \"\u090f\u0938\u0915\u094b \u0918\u0930\u092e\u093e \u0906\u0917\u094b \u0932\u093e\u0939\u093f\u0926\u0947 \u0964\"])\n['PROFANITY_1', 'GENERAL', 'VIOLENCE']\n```\n\n## About Output\n\nNephased can distinguish between 4 categories:\n\n- GENERAL : Instance without any profanity or violence.\n- PROFANITY_0 : Instance including rude, bad or slander which are not very harsh but offensive words used on day-to-day lives in Nepal.\n- PROFANITY_1 : Instance including swear or curse words which are very harsh\n- VIOLENCE : Instance including physical assualt or rape and pyromaniac act.\n\nThe guidelines for segragating such sentiments are on [NepsaGuidelines](https://github.com/oya163/nepali-sentiment-analysis/blob/master/guidelines/NepsaGuidelines_2020.pdf)\n\n> [!NOTE]\n> Nephased is trained on [NepSa](https://github.com/oya163/nepali-sentiment-analysis/blob/master/data/nepcls/csv/ss_ac_at_txt_unbal.csv) dataset \\\n> By default Nephased preprocesses the input:\n>\n> - stemming using [nepali-stemmer](https://github.com/oya163/nepali-stemmer)\n> - lowering case, punctuation and stopwords removal \\\n> you can choose to not preprocess text when initializing Nephased\n>\n> ```python\n> clf = nephased(preprocess_text = False)\n> ```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A BERT-based text sentiment classification pipeline for Nepali",
"version": "0.0.31",
"project_urls": {
"Homepage": "https://github.com/angeltamang123/nephased",
"Source": "https://github.com/angeltamang123/nephased"
},
"split_keywords": [
"nlp",
" transformers",
" bert",
" nepali"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "6afa4a82d1df107fbdb157d9fbd104b022d214b81beb7c14e187c756b82f2143",
"md5": "9ecd6a86478c0e72f11973ba8a8a126a",
"sha256": "130cee904e472adaa64609265356dda2d7515aae8d31e288c4455f7f6a8a3cac"
},
"downloads": -1,
"filename": "nephased-0.0.31-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9ecd6a86478c0e72f11973ba8a8a126a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 4726,
"upload_time": "2025-02-09T16:56:40",
"upload_time_iso_8601": "2025-02-09T16:56:40.501576Z",
"url": "https://files.pythonhosted.org/packages/6a/fa/4a82d1df107fbdb157d9fbd104b022d214b81beb7c14e187c756b82f2143/nephased-0.0.31-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4787e3f9044b115db23c64c90deacd3a97a356d4288d6f7f44d5d185a14a3157",
"md5": "1fa583f9f3d18bddc5dd8d5b05f6f8f4",
"sha256": "d5b238ee8f55c2efa6adaaae9101c537adc906c0734c491dfb6fbfadb9505109"
},
"downloads": -1,
"filename": "nephased-0.0.31.tar.gz",
"has_sig": false,
"md5_digest": "1fa583f9f3d18bddc5dd8d5b05f6f8f4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 4465,
"upload_time": "2025-02-09T16:56:41",
"upload_time_iso_8601": "2025-02-09T16:56:41.738095Z",
"url": "https://files.pythonhosted.org/packages/47/87/e3f9044b115db23c64c90deacd3a97a356d4288d6f7f44d5d185a14a3157/nephased-0.0.31.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-09 16:56:41",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "angeltamang123",
"github_project": "nephased",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "nephased"
}