neptune-lightgbm


Nameneptune-lightgbm JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttps://neptune.ai/
SummaryNeptune.ai LightGBM integration library
upload_time2023-03-29 13:27:18
maintainer
docs_urlNone
authorneptune.ai
requires_python>=3.7,<4.0
licenseApache-2.0
keywords mlops ml experiment tracking ml model registry ml model store ml metadata store
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Neptune + LightGBM Integration

Experiment tracking, model registry, data versioning, and live model monitoring for LightGBM trained models.

## What will you get with this integration?

* Log, display, organize, and compare ML experiments in a single place
* Version, store, manage, and query trained models, and model building metadata
* Record and monitor model training, evaluation, or production runs live

## What will be logged to Neptune?

* training and validation metrics,
* parameters,
* feature names, num_features, and num_rows for the train set,
* hardware consumption (CPU, GPU, memory),
* stdout and stderr logs,
* training code and Git commit information,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)

![image](https://user-images.githubusercontent.com/97611089/160637021-6d324be7-00f0-4b89-bffd-ae937f6802b4.png)
*Example dashboard with train-valid metrics and selected parameters*


## Resources

* [Documentation](https://docs.neptune.ai/integrations/lightgbm)
* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/lightgbm/scripts/Neptune_LightGBM_train_summary.py)
* [Example of a run logged in the Neptune app](https://app.neptune.ai/o/common/org/lightgbm-integration/e/LGBM-86/dashboard/train-cls-summary-6c07f9e0-36ca-4432-9530-7fd3457220b6)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/lightgbm/notebooks/Neptune_LightGBM.ipynb)

## Example

```
# On the command line:
pip install neptune-lightgbm
```

```python
# In Python:
import lightgbm as lgb
import neptune
from neptune.integrations.lightgbm import NeptuneCallback

# Start a run
run = neptune.init_run(
    project="common/lightgbm-integration",
    api_token=neptune.ANONYMOUS_API_TOKEN,
)

# Create a NeptuneCallback instance
neptune_callback = NeptuneCallback(run=run)

# Prepare datasets
...
lgb_train = lgb.Dataset(X_train, y_train)

# Define model parameters
params = {
    "boosting_type": "gbdt",
    "objective": "multiclass",
    "num_class": 10,
    ...
}

# Train the model
gbm = lgb.train(
    params,
    lgb_train,
    callbacks=[neptune_callback],
)
```

## Support

If you got stuck or simply want to talk to us, here are your options:

* Check our [FAQ page](https://docs.neptune.ai/getting-started/getting-help#frequently-asked-questions)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at support@neptune.ai


            

Raw data

            {
    "_id": null,
    "home_page": "https://neptune.ai/",
    "name": "neptune-lightgbm",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7,<4.0",
    "maintainer_email": "",
    "keywords": "MLOps,ML Experiment Tracking,ML Model Registry,ML Model Store,ML Metadata Store",
    "author": "neptune.ai",
    "author_email": "contact@neptune.ai",
    "download_url": "https://files.pythonhosted.org/packages/24/20/8e12db5d9b599986450a2155581dfd42241ecfd29d353adf6099968560ca/neptune_lightgbm-2.0.0.tar.gz",
    "platform": null,
    "description": "# Neptune + LightGBM Integration\n\nExperiment tracking, model registry, data versioning, and live model monitoring for LightGBM trained models.\n\n## What will you get with this integration?\n\n* Log, display, organize, and compare ML experiments in a single place\n* Version, store, manage, and query trained models, and model building metadata\n* Record and monitor model training, evaluation, or production runs live\n\n## What will be logged to Neptune?\n\n* training and validation metrics,\n* parameters,\n* feature names, num_features, and num_rows for the train set,\n* hardware consumption (CPU, GPU, memory),\n* stdout and stderr logs,\n* training code and Git commit information,\n* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)\n\n![image](https://user-images.githubusercontent.com/97611089/160637021-6d324be7-00f0-4b89-bffd-ae937f6802b4.png)\n*Example dashboard with train-valid metrics and selected parameters*\n\n\n## Resources\n\n* [Documentation](https://docs.neptune.ai/integrations/lightgbm)\n* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/lightgbm/scripts/Neptune_LightGBM_train_summary.py)\n* [Example of a run logged in the Neptune app](https://app.neptune.ai/o/common/org/lightgbm-integration/e/LGBM-86/dashboard/train-cls-summary-6c07f9e0-36ca-4432-9530-7fd3457220b6)\n* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/lightgbm/notebooks/Neptune_LightGBM.ipynb)\n\n## Example\n\n```\n# On the command line:\npip install neptune-lightgbm\n```\n\n```python\n# In Python:\nimport lightgbm as lgb\nimport neptune\nfrom neptune.integrations.lightgbm import NeptuneCallback\n\n# Start a run\nrun = neptune.init_run(\n    project=\"common/lightgbm-integration\",\n    api_token=neptune.ANONYMOUS_API_TOKEN,\n)\n\n# Create a NeptuneCallback instance\nneptune_callback = NeptuneCallback(run=run)\n\n# Prepare datasets\n...\nlgb_train = lgb.Dataset(X_train, y_train)\n\n# Define model parameters\nparams = {\n    \"boosting_type\": \"gbdt\",\n    \"objective\": \"multiclass\",\n    \"num_class\": 10,\n    ...\n}\n\n# Train the model\ngbm = lgb.train(\n    params,\n    lgb_train,\n    callbacks=[neptune_callback],\n)\n```\n\n## Support\n\nIf you got stuck or simply want to talk to us, here are your options:\n\n* Check our [FAQ page](https://docs.neptune.ai/getting-started/getting-help#frequently-asked-questions)\n* You can submit bug reports, feature requests, or contributions directly to the repository.\n* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),\n* You can just shoot us an email at support@neptune.ai\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Neptune.ai LightGBM integration library",
    "version": "2.0.0",
    "split_keywords": [
        "mlops",
        "ml experiment tracking",
        "ml model registry",
        "ml model store",
        "ml metadata store"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "296ba5c4f0fc4e011fe70c0eddb23486e477945cc4984ddaebc1e261ad074e6f",
                "md5": "507b7d1bf0928c45961d5a235bd00ac4",
                "sha256": "1413068c34c1fd534b89b407e8da27485401d5ae3e2bb21f683153b72c5a53df"
            },
            "downloads": -1,
            "filename": "neptune_lightgbm-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "507b7d1bf0928c45961d5a235bd00ac4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7,<4.0",
            "size": 12460,
            "upload_time": "2023-03-29T13:27:15",
            "upload_time_iso_8601": "2023-03-29T13:27:15.135863Z",
            "url": "https://files.pythonhosted.org/packages/29/6b/a5c4f0fc4e011fe70c0eddb23486e477945cc4984ddaebc1e261ad074e6f/neptune_lightgbm-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "24208e12db5d9b599986450a2155581dfd42241ecfd29d353adf6099968560ca",
                "md5": "03ea92ff249e9c76aa7ca5a58578797c",
                "sha256": "52e0f2f1df57c0fae5b10d50c5f8e4264457f740ac8e04b3b97d2cae49c8629a"
            },
            "downloads": -1,
            "filename": "neptune_lightgbm-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "03ea92ff249e9c76aa7ca5a58578797c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7,<4.0",
            "size": 10866,
            "upload_time": "2023-03-29T13:27:18",
            "upload_time_iso_8601": "2023-03-29T13:27:18.437549Z",
            "url": "https://files.pythonhosted.org/packages/24/20/8e12db5d9b599986450a2155581dfd42241ecfd29d353adf6099968560ca/neptune_lightgbm-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-29 13:27:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "neptune-lightgbm"
}
        
Elapsed time: 0.05730s