# Neptune + Prophet integration
Experiment tracking for Prophet-trained models.
## What will you get with this integration?
* Log, organize, visualize, and compare ML experiments in a single place
* Monitor model training live
* Version and query production-ready models and associated metadata (e.g., datasets)
* Collaborate with the team and across the organization
## What will be logged to Neptune?
* parameters,
* forecast data frames,
* residual diagnostic charts,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
![image](https://docs.neptune.ai/img/app/integrations/prophet.png)
## Resources
* [Documentation](https://docs.neptune.ai/integrations/prophet)
* [Code example on GitHub](https://github.com/neptune-ai/examples/tree/main/integrations-and-supported-tools/prophet/scripts)
* [Example project in the Neptune app](https://app.neptune.ai/o/common/org/fbprophet-integration/runs/details?viewId=standard-view&detailsTab=dashboard&dashboardId=Diagnostic-charts-5855c208-c4b8-4171-b065-d0e8802b1b60&shortId=FBPROP-3211&type=run)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/prophet/notebooks/Neptune_prophet.ipynb)
## Example
### Before you start
- [Install and set up Neptune](https://docs.neptune.ai/setup/installation).
- Have Prophet installed.
### Installation
```
# On the command line
pip install neptune-prophet
```
### Logging example
```python
# In Python
import pandas as pd
from prophet import Prophet
import neptune
import neptune.integrations.prophet as npt_utils
# Start a run
run = neptune.init_run(project="common/fbprophet-integration", api_token=neptune.ANONYMOUS_API_TOKEN)
# Load dataset and fit model
dataset = pd.read_csv(
"https://raw.githubusercontent.com/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv"
)
model = Prophet()
model.fit(dataset)
# Log summary metadata (including model, dataset, forecast and charts)
run["prophet_summary"] = npt_utils.create_summary(model=model, df=df, fcst=forecast)
# Stop the run
run.stop()
```
## Support
If you got stuck or simply want to talk to us, here are your options:
* Check our [FAQ page](https://docs.neptune.ai/getting_help).
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! In the Neptune app, click the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP).
* You can just shoot us an email at [support@neptune.ai](mailto:support@neptune.ai).
Raw data
{
"_id": null,
"home_page": "https://neptune.ai/",
"name": "neptune-prophet",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7,<4.0",
"maintainer_email": "",
"keywords": "MLOps,ML Experiment Tracking,ML Model Registry,ML Model Store,ML Metadata Store",
"author": "neptune.ai",
"author_email": "contact@neptune.ai",
"download_url": "https://files.pythonhosted.org/packages/7d/38/211586bc1b6898987aa5eef2163bf495b4e3d81345f2c497d93e65c868e6/neptune_prophet-1.0.1.tar.gz",
"platform": null,
"description": "# Neptune + Prophet integration\n\nExperiment tracking for Prophet-trained models.\n\n## What will you get with this integration?\n\n* Log, organize, visualize, and compare ML experiments in a single place\n* Monitor model training live\n* Version and query production-ready models and associated metadata (e.g., datasets)\n* Collaborate with the team and across the organization\n\n## What will be logged to Neptune?\n\n* parameters,\n* forecast data frames,\n* residual diagnostic charts,\n* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)\n\n![image](https://docs.neptune.ai/img/app/integrations/prophet.png)\n\n## Resources\n\n* [Documentation](https://docs.neptune.ai/integrations/prophet)\n* [Code example on GitHub](https://github.com/neptune-ai/examples/tree/main/integrations-and-supported-tools/prophet/scripts)\n* [Example project in the Neptune app](https://app.neptune.ai/o/common/org/fbprophet-integration/runs/details?viewId=standard-view&detailsTab=dashboard&dashboardId=Diagnostic-charts-5855c208-c4b8-4171-b065-d0e8802b1b60&shortId=FBPROP-3211&type=run)\n* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/prophet/notebooks/Neptune_prophet.ipynb)\n\n## Example\n\n### Before you start\n\n- [Install and set up Neptune](https://docs.neptune.ai/setup/installation).\n- Have Prophet installed.\n\n### Installation\n\n```\n# On the command line\npip install neptune-prophet\n```\n\n### Logging example\n\n```python\n# In Python\nimport pandas as pd\nfrom prophet import Prophet\nimport neptune\nimport neptune.integrations.prophet as npt_utils\n\n# Start a run\nrun = neptune.init_run(project=\"common/fbprophet-integration\", api_token=neptune.ANONYMOUS_API_TOKEN)\n\n# Load dataset and fit model\ndataset = pd.read_csv(\n \"https://raw.githubusercontent.com/facebook/prophet/main/examples/example_wp_log_peyton_manning.csv\"\n)\nmodel = Prophet()\nmodel.fit(dataset)\n\n# Log summary metadata (including model, dataset, forecast and charts)\nrun[\"prophet_summary\"] = npt_utils.create_summary(model=model, df=df, fcst=forecast)\n\n# Stop the run\nrun.stop()\n```\n\n## Support\n\nIf you got stuck or simply want to talk to us, here are your options:\n\n* Check our [FAQ page](https://docs.neptune.ai/getting_help).\n* You can submit bug reports, feature requests, or contributions directly to the repository.\n* Chat! In the Neptune app, click the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP).\n* You can just shoot us an email at [support@neptune.ai](mailto:support@neptune.ai).\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Neptune.ai Prophet integration library",
"version": "1.0.1",
"project_urls": {
"Documentation": "https://docs.neptune.ai/integrations/prophet/",
"Homepage": "https://neptune.ai/",
"Repository": "https://github.com/neptune-ai/neptune-prophet",
"Tracker": "https://github.com/neptune-ai/neptune-prophet/issues"
},
"split_keywords": [
"mlops",
"ml experiment tracking",
"ml model registry",
"ml model store",
"ml metadata store"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "12215cef4da59beaa84e0963be254e16108467042f162eadf13e99677d06cc95",
"md5": "25f99bc1b323b6e0889099d1174442bc",
"sha256": "25a6bb3968fa5564e87eaf4da4ff69dcaec5b5b2461e04f629049a251a0adfdb"
},
"downloads": -1,
"filename": "neptune_prophet-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "25f99bc1b323b6e0889099d1174442bc",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7,<4.0",
"size": 12334,
"upload_time": "2023-10-27T10:24:35",
"upload_time_iso_8601": "2023-10-27T10:24:35.593375Z",
"url": "https://files.pythonhosted.org/packages/12/21/5cef4da59beaa84e0963be254e16108467042f162eadf13e99677d06cc95/neptune_prophet-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7d38211586bc1b6898987aa5eef2163bf495b4e3d81345f2c497d93e65c868e6",
"md5": "69db763f5cb9bfbc7c5f077e528d8ead",
"sha256": "7bc13b075822c6d45e6b750c199abd18f4e0d1e915190d20bff382332f1ba887"
},
"downloads": -1,
"filename": "neptune_prophet-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "69db763f5cb9bfbc7c5f077e528d8ead",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7,<4.0",
"size": 10670,
"upload_time": "2023-10-27T10:24:36",
"upload_time_iso_8601": "2023-10-27T10:24:36.711647Z",
"url": "https://files.pythonhosted.org/packages/7d/38/211586bc1b6898987aa5eef2163bf495b4e3d81345f2c497d93e65c868e6/neptune_prophet-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-27 10:24:36",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "neptune-ai",
"github_project": "neptune-prophet",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "neptune-prophet"
}