# Neptune + Sacred Integration
Neptune is a tool used for experiment tracking, model registry, data versioning, and live model monitoring. This integration lets you use it as a UI (frontend) for the experiments you track in Sacred.
## What will you get with this integration?
* Log, display, organize, and compare ML experiments in a single place
* Version, store, manage, and query trained models, and model building metadata
* Record and monitor model training, evaluation, or production runs live
## What will be logged to Neptune?
* Hyperparameters
* Losses and metrics
* Training code (Python scripts or Jupyter notebooks) and Git information
* Dataset version
* Model configuration
* [Other metadata](https://docs.neptune.ai/logging/what_you_can_log)
![image](https://user-images.githubusercontent.com/97611089/160633857-48aa87ac-fcab-4225-8172-05aba159feaf.png)
*Example custom dashboard in the Neptune app*
## Resources
* [Documentation](https://docs.neptune.ai/integrations/sacred)
* [Code example on GitHub](https://github.com/neptune-ai/examples/tree/main/integrations-and-supported-tools/sacred/scripts)
* [Example dashboard in the Neptune app](https://app.neptune.ai/o/common/org/sacred-integration/e/SAC-1341/dashboard/Sacred-Dashboard-6741ab33-825c-4b25-8ebb-bb95c11ca3f4)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/sacred/notebooks/Neptune_Sacred.ipynb)
## Example
On the command line:
```
pip install neptune-sacred
```
In Python:
```python
import neptune
# Start a run
run = neptune.init_run(
project = "common/sacred-integration",
api_token = neptune.ANONYMOUS_API_TOKEN,
)
# Create a Sacred experiment
experiment = Experiment("image_classification", interactive=True)
# Add NeptuneObserver and run the experiment
experiment.observers.append(NeptuneObserver(run=run))
experiment.run()
```
## Support
If you got stuck or simply want to talk to us, here are your options:
* Check our [FAQ page](https://docs.neptune.ai/getting_help)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at support@neptune.ai
Raw data
{
"_id": null,
"home_page": "https://neptune.ai/",
"name": "neptune-sacred",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7,<4.0",
"maintainer_email": "",
"keywords": "MLOps,ML Experiment Tracking,ML Model Registry,ML Model Store,ML Metadata Store",
"author": "neptune.ai",
"author_email": "contact@neptune.ai",
"download_url": "https://files.pythonhosted.org/packages/ec/6e/798fadeb6afc708deadad66600ca6e471ce4cab91c817635da94b107e272/neptune_sacred-1.0.1.tar.gz",
"platform": null,
"description": "# Neptune + Sacred Integration\n\nNeptune is a tool used for experiment tracking, model registry, data versioning, and live model monitoring. This integration lets you use it as a UI (frontend) for the experiments you track in Sacred.\n\n## What will you get with this integration?\n\n* Log, display, organize, and compare ML experiments in a single place\n* Version, store, manage, and query trained models, and model building metadata\n* Record and monitor model training, evaluation, or production runs live\n\n## What will be logged to Neptune?\n\n* Hyperparameters\n* Losses and metrics\n* Training code (Python scripts or Jupyter notebooks) and Git information\n* Dataset version\n* Model configuration\n* [Other metadata](https://docs.neptune.ai/logging/what_you_can_log)\n\n![image](https://user-images.githubusercontent.com/97611089/160633857-48aa87ac-fcab-4225-8172-05aba159feaf.png)\n*Example custom dashboard in the Neptune app*\n\n## Resources\n\n* [Documentation](https://docs.neptune.ai/integrations/sacred)\n* [Code example on GitHub](https://github.com/neptune-ai/examples/tree/main/integrations-and-supported-tools/sacred/scripts)\n* [Example dashboard in the Neptune app](https://app.neptune.ai/o/common/org/sacred-integration/e/SAC-1341/dashboard/Sacred-Dashboard-6741ab33-825c-4b25-8ebb-bb95c11ca3f4)\n* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/main/integrations-and-supported-tools/sacred/notebooks/Neptune_Sacred.ipynb)\n\n## Example\n\nOn the command line:\n\n```\npip install neptune-sacred\n```\n\nIn Python:\n\n```python\nimport neptune\n\n# Start a run\nrun = neptune.init_run(\n project = \"common/sacred-integration\",\n api_token = neptune.ANONYMOUS_API_TOKEN,\n)\n\n# Create a Sacred experiment\nexperiment = Experiment(\"image_classification\", interactive=True)\n\n# Add NeptuneObserver and run the experiment\nexperiment.observers.append(NeptuneObserver(run=run))\nexperiment.run()\n```\n\n## Support\n\nIf you got stuck or simply want to talk to us, here are your options:\n\n* Check our [FAQ page](https://docs.neptune.ai/getting_help)\n* You can submit bug reports, feature requests, or contributions directly to the repository.\n* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),\n* You can just shoot us an email at support@neptune.ai\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Neptune.ai sacred integration library",
"version": "1.0.1",
"project_urls": {
"Documentation": "https://docs.neptune.ai/integrations/sacred/",
"Homepage": "https://neptune.ai/",
"Repository": "https://github.com/neptune-ai/neptune-sacred",
"Tracker": "https://github.com/neptune-ai/neptune-sacred/issues"
},
"split_keywords": [
"mlops",
"ml experiment tracking",
"ml model registry",
"ml model store",
"ml metadata store"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "13118c0fdb475ee9cf28567728df9f0c87d3d81aaa31ad32f30f7a66d7c42905",
"md5": "1c20f423602635e8fb9533526299023c",
"sha256": "b0059e1f66dec8aff5bdf521f0b5c515d1f44dd75b554c5825bf7636c95cb210"
},
"downloads": -1,
"filename": "neptune_sacred-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1c20f423602635e8fb9533526299023c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7,<4.0",
"size": 10895,
"upload_time": "2023-07-26T11:25:06",
"upload_time_iso_8601": "2023-07-26T11:25:06.211809Z",
"url": "https://files.pythonhosted.org/packages/13/11/8c0fdb475ee9cf28567728df9f0c87d3d81aaa31ad32f30f7a66d7c42905/neptune_sacred-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ec6e798fadeb6afc708deadad66600ca6e471ce4cab91c817635da94b107e272",
"md5": "3c6ddcbb779f33baf471ea4f84c7ec13",
"sha256": "076904429e80c870e0f553303e91a9ea7618c49cb9034cce9df842cfadc1b891"
},
"downloads": -1,
"filename": "neptune_sacred-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "3c6ddcbb779f33baf471ea4f84c7ec13",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7,<4.0",
"size": 9365,
"upload_time": "2023-07-26T11:25:08",
"upload_time_iso_8601": "2023-07-26T11:25:08.277035Z",
"url": "https://files.pythonhosted.org/packages/ec/6e/798fadeb6afc708deadad66600ca6e471ce4cab91c817635da94b107e272/neptune_sacred-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-26 11:25:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "neptune-ai",
"github_project": "neptune-sacred",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "neptune-sacred"
}