# Neptune + Keras integration
Experiment tracking for Keras-trained models.
## What will you get with this integration?
* Log, organize, visualize, and compare ML experiments in a single place
* Monitor model training live
* Version and query production-ready models and associated metadata (e.g., datasets)
* Collaborate with the team and across the organization
## What will be logged to Neptune?
* hyperparameters for every run,
* learning curves for losses and metrics during training,
* hardware consumption and stdout/stderr output during training,
* TensorFlow tensors as images to see model predictions live,
* training code and Git commit information,
* model weights,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)
![image](https://docs.neptune.ai/img/app/integrations/keras.png)
*Example charts in the Neptune UI with logged accuracy and loss*
## Resources
* [Documentation](https://docs.neptune.ai/integrations/keras)
* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/tensorflow-keras/scripts)
* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/tf-keras-integration/e/TFK-18/all)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/tensorflow-keras/notebooks/Neptune_TensorFlow_Keras.ipynb)
## Example
On the command line:
```
pip install neptune-tensorflow-keras
```
In Python:
```python
import neptune
from neptune.integrations.tensorflow_keras import NeptuneCallback
from neptune import ANONYMOUS_API_TOKEN
# Start a run
run = neptune.init_run(
project="common/tf-keras-integration",
api_token=ANONYMOUS_API_TOKEN,
)
# Create a NeptuneCallback instance
neptune_cbk = NeptuneCallback(run=run, base_namespace="metrics")
# Pass the callback to model.fit()
model.fit(
x_train,
y_train,
epochs=5,
batch_size=64,
callbacks=[neptune_cbk],
)
# Stop the run
run.stop()
```
## Support
If you got stuck or simply want to talk to us, here are your options:
* Check our [FAQ page](https://docs.neptune.ai/getting_help)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at support@neptune.ai
Raw data
{
"_id": null,
"home_page": "https://neptune.ai/",
"name": "neptune-tensorflow-keras",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7,<4.0",
"maintainer_email": "",
"keywords": "MLOps,ML Experiment Tracking,ML Model Registry,ML Model Store,ML Metadata Store",
"author": "neptune.ai",
"author_email": "contact@neptune.ai",
"download_url": "https://files.pythonhosted.org/packages/c9/86/73d975bd66c1390c0832f8229eac6ec50f111fe17005182fd5d7da7a7645/neptune_tensorflow_keras-2.2.2.tar.gz",
"platform": null,
"description": "# Neptune + Keras integration\n\nExperiment tracking for Keras-trained models.\n\n## What will you get with this integration?\n\n* Log, organize, visualize, and compare ML experiments in a single place\n* Monitor model training live\n* Version and query production-ready models and associated metadata (e.g., datasets)\n* Collaborate with the team and across the organization\n\n## What will be logged to Neptune?\n\n* hyperparameters for every run,\n* learning curves for losses and metrics during training,\n* hardware consumption and stdout/stderr output during training,\n* TensorFlow tensors as images to see model predictions live,\n* training code and Git commit information,\n* model weights,\n* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)\n\n![image](https://docs.neptune.ai/img/app/integrations/keras.png)\n*Example charts in the Neptune UI with logged accuracy and loss*\n\n## Resources\n\n* [Documentation](https://docs.neptune.ai/integrations/keras)\n* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/tensorflow-keras/scripts)\n* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/tf-keras-integration/e/TFK-18/all)\n* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/tensorflow-keras/notebooks/Neptune_TensorFlow_Keras.ipynb)\n\n## Example\n\nOn the command line:\n\n```\npip install neptune-tensorflow-keras\n```\n\nIn Python:\n\n```python\nimport neptune\nfrom neptune.integrations.tensorflow_keras import NeptuneCallback\nfrom neptune import ANONYMOUS_API_TOKEN\n\n# Start a run\nrun = neptune.init_run(\n project=\"common/tf-keras-integration\",\n api_token=ANONYMOUS_API_TOKEN,\n)\n\n# Create a NeptuneCallback instance\nneptune_cbk = NeptuneCallback(run=run, base_namespace=\"metrics\")\n\n# Pass the callback to model.fit()\nmodel.fit(\n x_train,\n y_train,\n epochs=5,\n batch_size=64,\n callbacks=[neptune_cbk],\n)\n\n# Stop the run\nrun.stop()\n```\n\n## Support\n\nIf you got stuck or simply want to talk to us, here are your options:\n\n* Check our [FAQ page](https://docs.neptune.ai/getting_help)\n* You can submit bug reports, feature requests, or contributions directly to the repository.\n* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),\n* You can just shoot us an email at support@neptune.ai\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Neptune.ai tensorflow-keras integration library",
"version": "2.2.2",
"project_urls": {
"Documentation": "https://docs.neptune.ai/integrations-and-supported-tools/model-training/tensorflow-keras",
"Homepage": "https://neptune.ai/",
"Repository": "https://github.com/neptune-ai/neptune-tensorflow-keras",
"Tracker": "https://github.com/neptune-ai/neptune-tensorflow-keras/issues"
},
"split_keywords": [
"mlops",
"ml experiment tracking",
"ml model registry",
"ml model store",
"ml metadata store"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7de43ae76fbf870e47e070ad0faa58380d80bb176c8dddd92b7a3bdb97b7ce4f",
"md5": "55afe0fb1cba910e92d0965649c7ede2",
"sha256": "73f98a608a9645aff4283d18cdfc8e1c04874fe8226df3b0cc8f8883cb2d1835"
},
"downloads": -1,
"filename": "neptune_tensorflow_keras-2.2.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "55afe0fb1cba910e92d0965649c7ede2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7,<4.0",
"size": 12416,
"upload_time": "2024-03-14T08:52:51",
"upload_time_iso_8601": "2024-03-14T08:52:51.994641Z",
"url": "https://files.pythonhosted.org/packages/7d/e4/3ae76fbf870e47e070ad0faa58380d80bb176c8dddd92b7a3bdb97b7ce4f/neptune_tensorflow_keras-2.2.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c98673d975bd66c1390c0832f8229eac6ec50f111fe17005182fd5d7da7a7645",
"md5": "d5350ef0315a3d412197598be3217cd3",
"sha256": "b1c22e277e363888b7bc2778d73a86af193fb22ea439178822c70785b629faa7"
},
"downloads": -1,
"filename": "neptune_tensorflow_keras-2.2.2.tar.gz",
"has_sig": false,
"md5_digest": "d5350ef0315a3d412197598be3217cd3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7,<4.0",
"size": 10669,
"upload_time": "2024-03-14T08:52:53",
"upload_time_iso_8601": "2024-03-14T08:52:53.846403Z",
"url": "https://files.pythonhosted.org/packages/c9/86/73d975bd66c1390c0832f8229eac6ec50f111fe17005182fd5d7da7a7645/neptune_tensorflow_keras-2.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-14 08:52:53",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "neptune-ai",
"github_project": "neptune-tensorflow-keras",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "neptune-tensorflow-keras"
}