nerdd-link


Namenerdd-link JSON
Version 0.5.0 PyPI version JSON
download
home_pageNone
SummaryRun a NERDD module as a service
upload_time2025-07-24 00:15:00
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords science research development nerdd
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # NERDD-Link

Run a [NERDD module](https://github.com/molinfo-vienna/nerdd-module) as a  
service that consumes input molecules and produces prediction tuples.


## Installation

```bash
pip install -U nerdd-link
```
  
## Usage

When a class inherits from ```nerdd_module.AbstractModel``` (see 
[NERDD Module Github page](https://github.com/molinfo-vienna/nerdd-module)), it can be 
used to create a Kafka service. 

```bash 
# run a Kafka service for NerddModel on localhost:9092
run_nerdd_server package.path.to.NerddModel

# modify broker url, input topic and batch size
run_nerdd_server package.path.to.NerddModel \
  --broker-url my-cluster-kafka-bootstrap.kafka:9092 \
  --input-topic examples \
  --batch-size 10

# more information via --help
run_nerdd_server --help
```

If the model class is called ```ExamplePredictionModel```, the server will read input 
tuples from the input topic ```example-prediction-inputs``` in batches of size 100
and write results to the ```results``` topic. The batch size specifies the number
of input tuples that are given to the model at once.

## Communication


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "nerdd-link",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "Steffen Hirte <steffen.hirte@univie.ac.at>",
    "keywords": "science, research, development, nerdd",
    "author": null,
    "author_email": "Steffen Hirte <steffen.hirte@univie.ac.at>",
    "download_url": "https://files.pythonhosted.org/packages/c2/f9/fd9366d4673ac78081b2accdc8a5ff37683c700e8deb57dfc8bfce50585e/nerdd_link-0.5.0.tar.gz",
    "platform": null,
    "description": "# NERDD-Link\n\nRun a [NERDD module](https://github.com/molinfo-vienna/nerdd-module) as a  \nservice that consumes input molecules and produces prediction tuples.\n\n\n## Installation\n\n```bash\npip install -U nerdd-link\n```\n  \n## Usage\n\nWhen a class inherits from ```nerdd_module.AbstractModel``` (see \n[NERDD Module Github page](https://github.com/molinfo-vienna/nerdd-module)), it can be \nused to create a Kafka service. \n\n```bash \n# run a Kafka service for NerddModel on localhost:9092\nrun_nerdd_server package.path.to.NerddModel\n\n# modify broker url, input topic and batch size\nrun_nerdd_server package.path.to.NerddModel \\\n  --broker-url my-cluster-kafka-bootstrap.kafka:9092 \\\n  --input-topic examples \\\n  --batch-size 10\n\n# more information via --help\nrun_nerdd_server --help\n```\n\nIf the model class is called ```ExamplePredictionModel```, the server will read input \ntuples from the input topic ```example-prediction-inputs``` in batches of size 100\nand write results to the ```results``` topic. The batch size specifies the number\nof input tuples that are given to the model at once.\n\n## Communication\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Run a NERDD module as a service",
    "version": "0.5.0",
    "project_urls": {
        "Repository": "https://github.com/molinfo-vienna/nerdd-link"
    },
    "split_keywords": [
        "science",
        " research",
        " development",
        " nerdd"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "671159e2eec0b2253f2e65ce6804939880e3fa8cd92262b9977bf996afd947b7",
                "md5": "944811b37fbc45e425a14640c58ca765",
                "sha256": "f68748cba9a78883ca96709dc5c1905e1866eaef8f97bd543dba7005768aab40"
            },
            "downloads": -1,
            "filename": "nerdd_link-0.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "944811b37fbc45e425a14640c58ca765",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 39066,
            "upload_time": "2025-07-24T00:14:59",
            "upload_time_iso_8601": "2025-07-24T00:14:59.044851Z",
            "url": "https://files.pythonhosted.org/packages/67/11/59e2eec0b2253f2e65ce6804939880e3fa8cd92262b9977bf996afd947b7/nerdd_link-0.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c2f9fd9366d4673ac78081b2accdc8a5ff37683c700e8deb57dfc8bfce50585e",
                "md5": "561fbdd682cf3eb90152a49980f10428",
                "sha256": "d75afb4138b2a1863e7409149049ff5696e2a3a8c418e84f1fa24f907409c509"
            },
            "downloads": -1,
            "filename": "nerdd_link-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "561fbdd682cf3eb90152a49980f10428",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 26698,
            "upload_time": "2025-07-24T00:15:00",
            "upload_time_iso_8601": "2025-07-24T00:15:00.445530Z",
            "url": "https://files.pythonhosted.org/packages/c2/f9/fd9366d4673ac78081b2accdc8a5ff37683c700e8deb57dfc8bfce50585e/nerdd_link-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-24 00:15:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "molinfo-vienna",
    "github_project": "nerdd-link",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nerdd-link"
}
        
Elapsed time: 0.42829s