nerdd-link


Namenerdd-link JSON
Version 0.5.3 PyPI version JSON
download
home_pageNone
SummaryRun a NERDD module as a service
upload_time2025-09-08 23:45:23
maintainerNone
docs_urlNone
authorNone
requires_pythonNone
licenseNone
keywords science research development nerdd
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # NERDD-Link

Run a [NERDD module](https://github.com/molinfo-vienna/nerdd-module) as a  
service that consumes input molecules and produces prediction tuples.


## Installation

```bash
pip install -U nerdd-link
```
  
## Usage

When a class inherits from ```nerdd_module.AbstractModel``` (see 
[NERDD Module Github page](https://github.com/molinfo-vienna/nerdd-module)), it can be 
used to create a Kafka service. 

```bash 
# run a Kafka service for NerddModel on localhost:9092
run_nerdd_server package.path.to.NerddModel

# modify broker url, input topic and batch size
run_nerdd_server package.path.to.NerddModel \
  --broker-url my-cluster-kafka-bootstrap.kafka:9092 \
  --input-topic examples \
  --batch-size 10

# more information via --help
run_nerdd_server --help
```

If the model class is called ```ExamplePredictionModel```, the server will read input 
tuples from the input topic ```example-prediction-inputs``` in batches of size 100
and write results to the ```results``` topic. The batch size specifies the number
of input tuples that are given to the model at once.

## Communication


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "nerdd-link",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": "Steffen Hirte <steffen.hirte@univie.ac.at>",
    "keywords": "science, research, development, nerdd",
    "author": null,
    "author_email": "Steffen Hirte <steffen.hirte@univie.ac.at>",
    "download_url": "https://files.pythonhosted.org/packages/10/42/3c0e304d3bd00065daff4c677a457a4798cc7801c2cc38de205b221c112c/nerdd_link-0.5.3.tar.gz",
    "platform": null,
    "description": "# NERDD-Link\n\nRun a [NERDD module](https://github.com/molinfo-vienna/nerdd-module) as a  \nservice that consumes input molecules and produces prediction tuples.\n\n\n## Installation\n\n```bash\npip install -U nerdd-link\n```\n  \n## Usage\n\nWhen a class inherits from ```nerdd_module.AbstractModel``` (see \n[NERDD Module Github page](https://github.com/molinfo-vienna/nerdd-module)), it can be \nused to create a Kafka service. \n\n```bash \n# run a Kafka service for NerddModel on localhost:9092\nrun_nerdd_server package.path.to.NerddModel\n\n# modify broker url, input topic and batch size\nrun_nerdd_server package.path.to.NerddModel \\\n  --broker-url my-cluster-kafka-bootstrap.kafka:9092 \\\n  --input-topic examples \\\n  --batch-size 10\n\n# more information via --help\nrun_nerdd_server --help\n```\n\nIf the model class is called ```ExamplePredictionModel```, the server will read input \ntuples from the input topic ```example-prediction-inputs``` in batches of size 100\nand write results to the ```results``` topic. The batch size specifies the number\nof input tuples that are given to the model at once.\n\n## Communication\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Run a NERDD module as a service",
    "version": "0.5.3",
    "project_urls": {
        "Repository": "https://github.com/molinfo-vienna/nerdd-link"
    },
    "split_keywords": [
        "science",
        " research",
        " development",
        " nerdd"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0b157233b17953ad8e7811bae925d2d6b59a956701a5130902c042437ecac72a",
                "md5": "af79b343e11d5a0632cbd905bc31c72a",
                "sha256": "0438ea104facf6833a88476490591f8f626187d9c26a599893d16b30d2f01ff2"
            },
            "downloads": -1,
            "filename": "nerdd_link-0.5.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "af79b343e11d5a0632cbd905bc31c72a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 39298,
            "upload_time": "2025-09-08T23:45:21",
            "upload_time_iso_8601": "2025-09-08T23:45:21.882238Z",
            "url": "https://files.pythonhosted.org/packages/0b/15/7233b17953ad8e7811bae925d2d6b59a956701a5130902c042437ecac72a/nerdd_link-0.5.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "10423c0e304d3bd00065daff4c677a457a4798cc7801c2cc38de205b221c112c",
                "md5": "cce84fe33042aa3049a94a5f40ae11bf",
                "sha256": "8e2c4f85ee372d25f83063b87fa116c0d5e9ace8ab391a184f8849f63575e03a"
            },
            "downloads": -1,
            "filename": "nerdd_link-0.5.3.tar.gz",
            "has_sig": false,
            "md5_digest": "cce84fe33042aa3049a94a5f40ae11bf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 26933,
            "upload_time": "2025-09-08T23:45:23",
            "upload_time_iso_8601": "2025-09-08T23:45:23.530129Z",
            "url": "https://files.pythonhosted.org/packages/10/42/3c0e304d3bd00065daff4c677a457a4798cc7801c2cc38de205b221c112c/nerdd_link-0.5.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-08 23:45:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "molinfo-vienna",
    "github_project": "nerdd-link",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nerdd-link"
}
        
Elapsed time: 0.57928s