nessai


Namenessai JSON
Version 0.14.0.post0 PyPI version JSON
download
home_pageNone
SummaryNessai: Nested Sampling with Artificial Intelligence
upload_time2025-01-10 11:01:46
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT
keywords nested sampling normalizing flows machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4550693.svg)](https://doi.org/10.5281/zenodo.4550693)
[![PyPI](https://img.shields.io/pypi/v/nessai)](https://pypi.org/project/nessai/)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/nessai.svg)](https://anaconda.org/conda-forge/nessai)
[![Documentation Status](https://readthedocs.org/projects/nessai/badge/?version=latest)](https://nessai.readthedocs.io/en/latest/?badge=latest)
![license](https://anaconda.org/conda-forge/nessai/badges/license.svg)
![tests](https://github.com/mj-will/nessai/actions/workflows/tests.yml/badge.svg)
![int-tests](https://github.com/mj-will/nessai/actions/workflows/integration-tests.yml/badge.svg)
[![codecov](https://codecov.io/gh/mj-will/nessai/branch/main/graph/badge.svg?token=O7SN167SK6)](https://codecov.io/gh/mj-will/nessai)
[![gitter](https://img.shields.io/gitter/room/nessai/nessai)](https://app.gitter.im/#/room/#nessai:gitter.im)

# nessai: Nested Sampling with Artificial Intelligence

``nessai`` (/ˈnɛsi/): Nested Sampling with Artificial Intelligence

``nessai`` is a nested sampling algorithm for Bayesian Inference that incorporates normalising flows. It is designed for applications where the Bayesian likelihood is computationally expensive.

## Installation

``nessai`` can be installed using ``pip``:

```console
pip install nessai
```

or via ``conda``

```console
conda install -c conda-forge -c pytorch nessai
```

### PyTorch

By default the version of PyTorch will not necessarily match the drivers on your system, to install a different version with the correct CUDA support see the PyTorch homepage for instructions: https://pytorch.org/.

### Using ``bilby``

As of ``bilby`` version 2.3.0, the recommended way to use ``nessai`` is via the [``nessai-bilby`` sampler plugin](https://github.com/bilby-dev/nessai-bilby).
This can be installed via either ``conda`` or ``pip`` and provides the most
up-to-date interface for ``nessai``.
This includes support for the importance nested sampler (``inessai``).

It can be installed using either

```console
pip install nessai-bilby
```

or

```console
conda install -c conda-forge nessai-bilby
```

See the examples included with ``nessai`` for how to run ``nessai`` via ``bilby``.

## Documentation

Documentation is available at: [nessai.readthedocs.io](https://nessai.readthedocs.io/)

## Help

For questions and other support, please either use our [gitter room](https://app.gitter.im/#/room/#nessai:gitter.im) or [open an issue](https://github.com/mj-will/nessai/issues/new/choose).

## Contributing

Please see the guidelines [here](https://github.com/mj-will/nessai/blob/master/CONTRIBUTING.md).


## Acknowledgements

The core nested sampling code, model design and code for computing the posterior in ``nessai`` was based on [`cpnest`](https://github.com/johnveitch/cpnest) with permission from the authors.

The normalising flows implemented in ``nessai`` are all either directly imported from [`nflows`](https://github.com/bayesiains/nflows/tree/master/nflows) or heavily based on it.

Other code snippets that draw on existing code reference the source in their corresponding doc-strings.

The authors also thank Christian Chapman-Bird, Laurence Datrier, Fergus Hayes, Jethro Linley and Simon Tait for their feedback and help finding bugs in ``nessai``.

## Citing

If you find ``nessai`` useful in your work please cite the DOI for this code and our papers:

```bibtex
@software{nessai,
  author       = {Michael J. Williams},
  title        = {nessai: Nested Sampling with Artificial Intelligence},
  month        = feb,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {latest},
  doi          = {10.5281/zenodo.4550693},
  url          = {https://doi.org/10.5281/zenodo.4550693}
}

@article{Williams:2021qyt,
    author = "Williams, Michael J. and Veitch, John and Messenger, Chris",
    title = "{Nested sampling with normalizing flows for gravitational-wave inference}",
    eprint = "2102.11056",
    archivePrefix = "arXiv",
    primaryClass = "gr-qc",
    doi = "10.1103/PhysRevD.103.103006",
    journal = "Phys. Rev. D",
    volume = "103",
    number = "10",
    pages = "103006",
    year = "2021"
}

@article{Williams:2023ppp,
    author = "Williams, Michael J. and Veitch, John and Messenger, Chris",
    title = "{Importance nested sampling with normalising flows}",
    eprint = "2302.08526",
    archivePrefix = "arXiv",
    primaryClass = "astro-ph.IM",
    reportNumber = "LIGO-P2200283",
    month = "2",
    year = "2023"
}

```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "nessai",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "nested sampling, normalizing flows, machine learning",
    "author": null,
    "author_email": "\"Michael J. Williams\" <michaeljw1@googlemail.com>",
    "download_url": "https://files.pythonhosted.org/packages/cf/62/17a89c5a3b52434d92c62a6da8616a196b13dd7044a08fb5688e82e72176/nessai-0.14.0.post0.tar.gz",
    "platform": null,
    "description": "[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4550693.svg)](https://doi.org/10.5281/zenodo.4550693)\n[![PyPI](https://img.shields.io/pypi/v/nessai)](https://pypi.org/project/nessai/)\n[![Conda Version](https://img.shields.io/conda/vn/conda-forge/nessai.svg)](https://anaconda.org/conda-forge/nessai)\n[![Documentation Status](https://readthedocs.org/projects/nessai/badge/?version=latest)](https://nessai.readthedocs.io/en/latest/?badge=latest)\n![license](https://anaconda.org/conda-forge/nessai/badges/license.svg)\n![tests](https://github.com/mj-will/nessai/actions/workflows/tests.yml/badge.svg)\n![int-tests](https://github.com/mj-will/nessai/actions/workflows/integration-tests.yml/badge.svg)\n[![codecov](https://codecov.io/gh/mj-will/nessai/branch/main/graph/badge.svg?token=O7SN167SK6)](https://codecov.io/gh/mj-will/nessai)\n[![gitter](https://img.shields.io/gitter/room/nessai/nessai)](https://app.gitter.im/#/room/#nessai:gitter.im)\n\n# nessai: Nested Sampling with Artificial Intelligence\n\n``nessai`` (/\u02c8n\u025bsi/): Nested Sampling with Artificial Intelligence\n\n``nessai`` is a nested sampling algorithm for Bayesian Inference that incorporates normalising flows. It is designed for applications where the Bayesian likelihood is computationally expensive.\n\n## Installation\n\n``nessai`` can be installed using ``pip``:\n\n```console\npip install nessai\n```\n\nor via ``conda``\n\n```console\nconda install -c conda-forge -c pytorch nessai\n```\n\n### PyTorch\n\nBy default the version of PyTorch will not necessarily match the drivers on your system, to install a different version with the correct CUDA support see the PyTorch homepage for instructions: https://pytorch.org/.\n\n### Using ``bilby``\n\nAs of ``bilby`` version 2.3.0, the recommended way to use ``nessai`` is via the [``nessai-bilby`` sampler plugin](https://github.com/bilby-dev/nessai-bilby).\nThis can be installed via either ``conda`` or ``pip`` and provides the most\nup-to-date interface for ``nessai``.\nThis includes support for the importance nested sampler (``inessai``).\n\nIt can be installed using either\n\n```console\npip install nessai-bilby\n```\n\nor\n\n```console\nconda install -c conda-forge nessai-bilby\n```\n\nSee the examples included with ``nessai`` for how to run ``nessai`` via ``bilby``.\n\n## Documentation\n\nDocumentation is available at: [nessai.readthedocs.io](https://nessai.readthedocs.io/)\n\n## Help\n\nFor questions and other support, please either use our [gitter room](https://app.gitter.im/#/room/#nessai:gitter.im) or [open an issue](https://github.com/mj-will/nessai/issues/new/choose).\n\n## Contributing\n\nPlease see the guidelines [here](https://github.com/mj-will/nessai/blob/master/CONTRIBUTING.md).\n\n\n## Acknowledgements\n\nThe core nested sampling code, model design and code for computing the posterior in ``nessai`` was based on [`cpnest`](https://github.com/johnveitch/cpnest) with permission from the authors.\n\nThe normalising flows implemented in ``nessai`` are all either directly imported from [`nflows`](https://github.com/bayesiains/nflows/tree/master/nflows) or heavily based on it.\n\nOther code snippets that draw on existing code reference the source in their corresponding doc-strings.\n\nThe authors also thank Christian Chapman-Bird, Laurence Datrier, Fergus Hayes, Jethro Linley and Simon Tait for their feedback and help finding bugs in ``nessai``.\n\n## Citing\n\nIf you find ``nessai`` useful in your work please cite the DOI for this code and our papers:\n\n```bibtex\n@software{nessai,\n  author       = {Michael J. Williams},\n  title        = {nessai: Nested Sampling with Artificial Intelligence},\n  month        = feb,\n  year         = 2021,\n  publisher    = {Zenodo},\n  version      = {latest},\n  doi          = {10.5281/zenodo.4550693},\n  url          = {https://doi.org/10.5281/zenodo.4550693}\n}\n\n@article{Williams:2021qyt,\n    author = \"Williams, Michael J. and Veitch, John and Messenger, Chris\",\n    title = \"{Nested sampling with normalizing flows for gravitational-wave inference}\",\n    eprint = \"2102.11056\",\n    archivePrefix = \"arXiv\",\n    primaryClass = \"gr-qc\",\n    doi = \"10.1103/PhysRevD.103.103006\",\n    journal = \"Phys. Rev. D\",\n    volume = \"103\",\n    number = \"10\",\n    pages = \"103006\",\n    year = \"2021\"\n}\n\n@article{Williams:2023ppp,\n    author = \"Williams, Michael J. and Veitch, John and Messenger, Chris\",\n    title = \"{Importance nested sampling with normalising flows}\",\n    eprint = \"2302.08526\",\n    archivePrefix = \"arXiv\",\n    primaryClass = \"astro-ph.IM\",\n    reportNumber = \"LIGO-P2200283\",\n    month = \"2\",\n    year = \"2023\"\n}\n\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Nessai: Nested Sampling with Artificial Intelligence",
    "version": "0.14.0.post0",
    "project_urls": {
        "Documentation": "https://nessai.readthedocs.io/",
        "Homepage": "https://github.com/mj-will/nessai"
    },
    "split_keywords": [
        "nested sampling",
        " normalizing flows",
        " machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bb83edec28d25c3cc0dc910421009597758a35a1b7e5f936730e116bae299a07",
                "md5": "56435e9b67fdf284d6c3e4d5f6ece99b",
                "sha256": "d3c8a4b1e861f63bd751e807bb03d290b13f01f0cbfd9c0e3ea5ec10de95cd23"
            },
            "downloads": -1,
            "filename": "nessai-0.14.0.post0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "56435e9b67fdf284d6c3e4d5f6ece99b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 181182,
            "upload_time": "2025-01-10T11:01:44",
            "upload_time_iso_8601": "2025-01-10T11:01:44.118157Z",
            "url": "https://files.pythonhosted.org/packages/bb/83/edec28d25c3cc0dc910421009597758a35a1b7e5f936730e116bae299a07/nessai-0.14.0.post0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cf6217a89c5a3b52434d92c62a6da8616a196b13dd7044a08fb5688e82e72176",
                "md5": "01642fe0caf16ec8dae5fa5ffc1c8252",
                "sha256": "6027fc820f39c0d59e66b26d4a1b4a29557389422bdc69333819321af1e8b38b"
            },
            "downloads": -1,
            "filename": "nessai-0.14.0.post0.tar.gz",
            "has_sig": false,
            "md5_digest": "01642fe0caf16ec8dae5fa5ffc1c8252",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 324854,
            "upload_time": "2025-01-10T11:01:46",
            "upload_time_iso_8601": "2025-01-10T11:01:46.595542Z",
            "url": "https://files.pythonhosted.org/packages/cf/62/17a89c5a3b52434d92c62a6da8616a196b13dd7044a08fb5688e82e72176/nessai-0.14.0.post0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-10 11:01:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mj-will",
    "github_project": "nessai",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "nessai"
}
        
Elapsed time: 0.54409s