[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7105559.svg)](https://doi.org/10.5281/zenodo.7105559)
[![PyPI](https://img.shields.io/pypi/v/nessai-models)](https://pypi.org/project/nessai-models/)
[![Integration tests](https://github.com/mj-will/nessai-models/actions/workflows/integration-tests.yml/badge.svg)](https://github.com/mj-will/nessai-models/actions/workflows/integration-tests.yml)
[![Unit tests](https://github.com/mj-will/nessai-models/actions/workflows/tests.yml/badge.svg)](https://github.com/mj-will/nessai-models/actions/workflows/tests.yml)
# nessai-models
Models for use with the nested sampling package [`nessai`](https://github.com/mj-will/nessai).
## Included models
* n-dimensional unit Gaussian
* n-dimensional HalfGaussian
* n-dimensional Rosenbrock
* n-dimensional mixture of Gaussians
* n-dimensional slab plus spike model
* Gaussian mixture using data to based on [this example](https://github.com/johnveitch/cpnest/blob/master/examples/gaussianmixture.py) from `cpnest`
* n-dimensional Egg Box based on the version in [Feroz et al. 2008](https://arxiv.org/abs/0809.3437)
* n-dimensional Pyramid-like model
* n-dimensional Brewer likelihood (Skilling's "Staistical Model") from [Brewer et al.](https://arxiv.org/abs/0912.2380)
* Linear signal plus Gaussian noise model (`LinearSignal`)
* Sinusoidal signal plus Gaussian noise model (`SinusoidalSignal`)
* Mixture of 1-dimensional distributions (`MixtureOfDistributions`)
## Requirements
`nessai_models` requires:
* `numpy`
* `scipy`
* `nessai>=0.6.0`
## Installation
> We recommend following the [installation instructions for `nessai`](https://github.com/mj-will/nessai#installation) and then installing `nessai_models` since it shares all of its dependencies with `nessai`.
`nessai_models` can be install from PyPI using
```console
pip install nessai-models
```
## Example usage
Below is an example of using `nessai_models` so configure a 4-dimensional Gaussian and then sample it using `nessai`.
```python
from nessai import FlowSampler
from nessai_models import Gaussian
model = Gaussian(4)
fs = FlowSampler(model, output='example/')
fs.run()
```
## Citing
If you use `nessai_models` in your work please cite the [Zenodo DOI](https://doi.org/10.5281/zenodo.7105559)
Raw data
{
"_id": null,
"home_page": null,
"name": "nessai-models",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "nested sampling, normalizing flows, machine learning, nessai",
"author": null,
"author_email": "\"Michael J. Williams\" <michaeljw1@googlemail.com>",
"download_url": "https://files.pythonhosted.org/packages/67/f8/f400efd412a1f9b4b4ad30c55e70b4a234fbf2254aa7f49c6575550cba44/nessai-models-0.5.0.tar.gz",
"platform": null,
"description": "[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7105559.svg)](https://doi.org/10.5281/zenodo.7105559)\n[![PyPI](https://img.shields.io/pypi/v/nessai-models)](https://pypi.org/project/nessai-models/)\n[![Integration tests](https://github.com/mj-will/nessai-models/actions/workflows/integration-tests.yml/badge.svg)](https://github.com/mj-will/nessai-models/actions/workflows/integration-tests.yml)\n[![Unit tests](https://github.com/mj-will/nessai-models/actions/workflows/tests.yml/badge.svg)](https://github.com/mj-will/nessai-models/actions/workflows/tests.yml)\n\n# nessai-models\n\nModels for use with the nested sampling package [`nessai`](https://github.com/mj-will/nessai).\n\n## Included models\n\n* n-dimensional unit Gaussian\n* n-dimensional HalfGaussian\n* n-dimensional Rosenbrock\n* n-dimensional mixture of Gaussians\n* n-dimensional slab plus spike model\n* Gaussian mixture using data to based on [this example](https://github.com/johnveitch/cpnest/blob/master/examples/gaussianmixture.py) from `cpnest`\n* n-dimensional Egg Box based on the version in [Feroz et al. 2008](https://arxiv.org/abs/0809.3437)\n* n-dimensional Pyramid-like model\n* n-dimensional Brewer likelihood (Skilling's \"Staistical Model\") from [Brewer et al.](https://arxiv.org/abs/0912.2380)\n* Linear signal plus Gaussian noise model (`LinearSignal`)\n* Sinusoidal signal plus Gaussian noise model (`SinusoidalSignal`)\n* Mixture of 1-dimensional distributions (`MixtureOfDistributions`)\n\n## Requirements\n\n`nessai_models` requires:\n\n* `numpy`\n* `scipy`\n* `nessai>=0.6.0`\n\n## Installation\n\n> We recommend following the [installation instructions for `nessai`](https://github.com/mj-will/nessai#installation) and then installing `nessai_models` since it shares all of its dependencies with `nessai`.\n\n`nessai_models` can be install from PyPI using\n\n```console\npip install nessai-models\n```\n\n## Example usage\n\nBelow is an example of using `nessai_models` so configure a 4-dimensional Gaussian and then sample it using `nessai`.\n\n```python\nfrom nessai import FlowSampler\nfrom nessai_models import Gaussian\n\nmodel = Gaussian(4)\nfs = FlowSampler(model, output='example/')\nfs.run()\n```\n\n## Citing\n\nIf you use `nessai_models` in your work please cite the [Zenodo DOI](https://doi.org/10.5281/zenodo.7105559)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Models for nessai",
"version": "0.5.0",
"project_urls": {
"Homepage": "https://github.com/mj-will/nessai-models"
},
"split_keywords": [
"nested sampling",
" normalizing flows",
" machine learning",
" nessai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d7e49cae430f752a1f0e515d801ea1080fba7e2102d201bf4e941d3ee8f57d00",
"md5": "e516f9375940f75a3330c80e27017f51",
"sha256": "ae9092f62da024f29e777d74e61f4e03d64f4dc5698902971192755cae165fe4"
},
"downloads": -1,
"filename": "nessai_models-0.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e516f9375940f75a3330c80e27017f51",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 14479,
"upload_time": "2024-04-02T11:22:03",
"upload_time_iso_8601": "2024-04-02T11:22:03.724433Z",
"url": "https://files.pythonhosted.org/packages/d7/e4/9cae430f752a1f0e515d801ea1080fba7e2102d201bf4e941d3ee8f57d00/nessai_models-0.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "67f8f400efd412a1f9b4b4ad30c55e70b4a234fbf2254aa7f49c6575550cba44",
"md5": "6c14b3a24182fe62235807b356a8d85f",
"sha256": "ae06c8173227522cba265745aef3c68eac28f0008c6707d28c54fb6ba7af6537"
},
"downloads": -1,
"filename": "nessai-models-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "6c14b3a24182fe62235807b356a8d85f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 18117,
"upload_time": "2024-04-02T11:22:05",
"upload_time_iso_8601": "2024-04-02T11:22:05.528637Z",
"url": "https://files.pythonhosted.org/packages/67/f8/f400efd412a1f9b4b4ad30c55e70b4a234fbf2254aa7f49c6575550cba44/nessai-models-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-02 11:22:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mj-will",
"github_project": "nessai-models",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "nessai-models"
}