# League of Legends Mock Match Predictor
βοΈ **AI-powered League of Legends mock match simulator and summoner comparison tool**
This Model Context Protocol (MCP) server provides comprehensive League of Legends summoner analysis and mock match simulations based on historical performance data from the last 10 games.
## Features
- **π Summoner Analysis**: Get detailed statistics including KDA, damage dealt, and win rates
- **βοΈ Mock Match Simulation**: AI-powered 10-phase match progression simulation
- **π Multi-language Support**: Available in 7 languages
- **π Performance Comparison**: Side-by-side summoner comparisons
- **π― Match Prediction**: Outcome prediction based on historical data
## Supported Languages
- English (EN/ENGLISH)
- Korean (νκ΅μ΄)
- Traditional Chinese (ηΉι«δΈζ)
- Japanese (ζ₯ζ¬θͺ)
- Spanish (ESPAΓOL)
- Bengali (বাΰ¦ΰ¦²ΰ¦Ύ)
- Punjabi (ΰ¨ͺΰ©°ΰ¨ΰ¨Ύΰ¨¬ΰ©)
## Installation
### Prerequisites
- Python 3.10 or higher
- pip package manager
### Setup
1. **Clone the repository**:
```bash
git clone https://github.com/onepersonunicorn/lolgpt.git
cd lolgpt
```
2. **Install dependencies**:
```bash
pip install -r requirements.txt
```
3. **Set up environment variables** (optional):
```bash
export LOL_API_URL="https://1tier.xyz"
export LOL_DEFAULT_LANGUAGE="EN"
export LOL_API_TIMEOUT="30"
```
4. **Run the server**:
```bash
python main.py
```
## Usage
### Available Tools
The MCP server provides 6 different tools for various League of Legends simulation needs:
#### `league_of_legends_summoner_vs_match`
Main tool for comprehensive match simulation.
**Parameters:**
- `uidA` (required): Riot ID of first summoner
- `tagA` (required): Tag of first summoner
- `uidB` (required): Riot ID of second summoner
- `tagB` (required): Tag of second summoner
- `lang` (optional): Language for simulation (default: "EN")
### Example API call
```python
await league_of_legends_summoner_vs_match(
uidA="Hide on bush",
tagA="KR1",
uidB="Zeus",
tagB="KR1",
lang="EN"
)
```
### Example Usage

### Sample Output
```
βοΈ **League of Legends Mock Match Simulation**
ββββββββββββββββββββββββββββββββββββββββββββ
π Summoner A (PlayerOne#KR1) - Last 10 Games Statistics:
β’ Average Kills: 8.2
β’ Average Assists: 12.5
β’ Average Deaths: 4.1
β’ Average KDA: 5.05
β’ Average Damage Dealt: 28,450
β’ Win Rate: 70%
π Summoner B (PlayerTwo#NA1) - Last 10 Games Statistics:
β’ Average Kills: 6.8
β’ Average Assists: 9.2
β’ Average Deaths: 5.3
β’ Average KDA: 3.02
β’ Average Damage Dealt: 22,100
β’ Win Rate: 55%
π― Mock Match Simulation - Summoner's Rift:
ββββββββββββββββββββββββββββββββββββββββββββ
Phase 1: Welcome to the Snowdown Showdown.
Phase 2: Thirty seconds until minions spawn.
Phase 3: Minions have spawned!
Phase 4: First blood! Zeus has been slain.
Phase 5: Hide on bush has slain an enemy!
Phase 6: Hide on bush has destroyed a turret.
Phase 7: Zeus Quadrakill!
Phase 8: Hide on bush is legendary!
Phase 9: Hide on bush has destroyed a inhibitor.
Phase 10: Hide on bush victory!
### Smithery Configuration
The server supports Smithery configuration via `smithery.yaml`:
```
```yaml
startCommand:
type: stdio
configSchema:
properties:
debug:
type: boolean
default: false
apiUrl:
type: string
default: "https://1tier.xyz"
language:
type: string
default: "EN"
timeout:
type: number
default: 30
```
## API Integration
The server integrates with the 1tier.xyz API endpoint which provides:
- **Summoner Statistics**: Last 10 games performance data
- **Match Simulation**: AI-generated match progression
- **Multi-language Support**: Localized simulation text
- **Real-time Data**: Current summoner performance metrics
## License
This project is licensed under the MIT License
## Disclaimer
League of Legends mock match simulations are for entertainment purposes only. Results are based on historical performance data and do not guarantee actual match outcomes. League of Legends is a trademark of Riot Games, Inc.
## Support
For issues and questions:
- Create an issue on GitHub
- Contact the development team
## Acknowledgments
- **Riot Games** for League of Legends
- **1tier.xyz** for providing the API infrastructure
---
Made with β€οΈ for the League of Legends community
Raw data
{
"_id": null,
"home_page": "https://github.com/onepersonunicorn/lolgpt",
"name": "netmind-lolGPT",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "mcp, league-of-legends, lol, summoner, mock-match, simulation, esports, gaming, riot-games, summoners-rift, prediction, pvp, comparison, professional-gaming, t1, faker, zeus, lck, lcs, worlds, msi, pro-player, esports-analytics, competitive-lol, team-analysis, player-stats, tournament-prediction",
"author": "lolGPT Team",
"author_email": "lolGPT Team <faker@1tier.xyz>",
"download_url": "https://files.pythonhosted.org/packages/50/19/615aba43e395aed7a335a1163cc757588306255b60e5bd7b75eb132d0fe2/netmind_lolgpt-1.0.0.tar.gz",
"platform": null,
"description": "# League of Legends Mock Match Predictor\n\n\u2694\ufe0f **AI-powered League of Legends mock match simulator and summoner comparison tool**\n\nThis Model Context Protocol (MCP) server provides comprehensive League of Legends summoner analysis and mock match simulations based on historical performance data from the last 10 games.\n\n## Features\n\n- **\ud83d\udd0d Summoner Analysis**: Get detailed statistics including KDA, damage dealt, and win rates\n- **\u2694\ufe0f Mock Match Simulation**: AI-powered 10-phase match progression simulation\n- **\ud83c\udf0d Multi-language Support**: Available in 7 languages\n- **\ud83d\udcca Performance Comparison**: Side-by-side summoner comparisons\n- **\ud83c\udfaf Match Prediction**: Outcome prediction based on historical data\n\n## Supported Languages\n\n- English (EN/ENGLISH)\n- Korean (\ud55c\uad6d\uc5b4)\n- Traditional Chinese (\u7e41\u9ad4\u4e2d\u6587)\n- Japanese (\u65e5\u672c\u8a9e)\n- Spanish (ESPA\u00d1OL)\n- Bengali (\u09ac\u09be\u0982\u09b2\u09be)\n- Punjabi (\u0a2a\u0a70\u0a1c\u0a3e\u0a2c\u0a40)\n\n## Installation\n\n### Prerequisites\n\n- Python 3.10 or higher\n- pip package manager\n\n### Setup\n\n1. **Clone the repository**:\n ```bash\n git clone https://github.com/onepersonunicorn/lolgpt.git\n cd lolgpt\n ```\n\n2. **Install dependencies**:\n ```bash\n pip install -r requirements.txt\n ```\n\n3. **Set up environment variables** (optional):\n ```bash\n export LOL_API_URL=\"https://1tier.xyz\"\n export LOL_DEFAULT_LANGUAGE=\"EN\"\n export LOL_API_TIMEOUT=\"30\"\n ```\n\n4. **Run the server**:\n ```bash\n python main.py\n ```\n\n## Usage\n\n### Available Tools\n\nThe MCP server provides 6 different tools for various League of Legends simulation needs:\n\n#### `league_of_legends_summoner_vs_match`\nMain tool for comprehensive match simulation.\n\n**Parameters:**\n- `uidA` (required): Riot ID of first summoner\n- `tagA` (required): Tag of first summoner \n- `uidB` (required): Riot ID of second summoner\n- `tagB` (required): Tag of second summoner\n- `lang` (optional): Language for simulation (default: \"EN\")\n\n### Example API call\n```python\nawait league_of_legends_summoner_vs_match(\n uidA=\"Hide on bush\",\n tagA=\"KR1\", \n uidB=\"Zeus\",\n tagB=\"KR1\",\n lang=\"EN\"\n)\n```\n\n### Example Usage\n\n\n\n### Sample Output\n\n```\n\u2694\ufe0f **League of Legends Mock Match Simulation**\n\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\n\n\ud83d\udcca Summoner A (PlayerOne#KR1) - Last 10 Games Statistics:\n\u2022 Average Kills: 8.2\n\u2022 Average Assists: 12.5\n\u2022 Average Deaths: 4.1\n\u2022 Average KDA: 5.05\n\u2022 Average Damage Dealt: 28,450\n\u2022 Win Rate: 70%\n\n\ud83d\udcca Summoner B (PlayerTwo#NA1) - Last 10 Games Statistics:\n\u2022 Average Kills: 6.8\n\u2022 Average Assists: 9.2\n\u2022 Average Deaths: 5.3\n\u2022 Average KDA: 3.02\n\u2022 Average Damage Dealt: 22,100\n\u2022 Win Rate: 55%\n\n\ud83c\udfaf Mock Match Simulation - Summoner's Rift:\n\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\n\nPhase 1: Welcome to the Snowdown Showdown.\nPhase 2: Thirty seconds until minions spawn.\nPhase 3: Minions have spawned!\nPhase 4: First blood! Zeus has been slain.\nPhase 5: Hide on bush has slain an enemy!\nPhase 6: Hide on bush has destroyed a turret.\nPhase 7: Zeus Quadrakill!\nPhase 8: Hide on bush is legendary!\nPhase 9: Hide on bush has destroyed a inhibitor.\nPhase 10: Hide on bush victory!\n\n### Smithery Configuration\n\nThe server supports Smithery configuration via `smithery.yaml`:\n\n```\n\n```yaml\nstartCommand:\n type: stdio\n configSchema:\n properties:\n debug:\n type: boolean\n default: false\n apiUrl:\n type: string\n default: \"https://1tier.xyz\"\n language:\n type: string\n default: \"EN\"\n timeout:\n type: number\n default: 30\n```\n\n## API Integration\n\nThe server integrates with the 1tier.xyz API endpoint which provides:\n\n- **Summoner Statistics**: Last 10 games performance data\n- **Match Simulation**: AI-generated match progression\n- **Multi-language Support**: Localized simulation text\n- **Real-time Data**: Current summoner performance metrics\n\n## License\n\nThis project is licensed under the MIT License\n\n## Disclaimer\n\nLeague of Legends mock match simulations are for entertainment purposes only. Results are based on historical performance data and do not guarantee actual match outcomes. League of Legends is a trademark of Riot Games, Inc.\n\n## Support\n\nFor issues and questions:\n- Create an issue on GitHub\n- Contact the development team\n\n## Acknowledgments\n\n- **Riot Games** for League of Legends\n- **1tier.xyz** for providing the API infrastructure\n\n---\n\nMade with \u2764\ufe0f for the League of Legends community\n",
"bugtrack_url": null,
"license": null,
"summary": "AI-powered League of Legends professional esports match predictor and summoner analysis tool. Predict outcomes for T1, Faker, Zeus, and other pro players with advanced statistical modeling.",
"version": "1.0.0",
"project_urls": {
"Documentation": "https://1tier.xyz",
"Homepage": "https://1tier.xyz",
"Repository": "https://github.com/onepersonunicorn/lolgpt"
},
"split_keywords": [
"mcp",
" league-of-legends",
" lol",
" summoner",
" mock-match",
" simulation",
" esports",
" gaming",
" riot-games",
" summoners-rift",
" prediction",
" pvp",
" comparison",
" professional-gaming",
" t1",
" faker",
" zeus",
" lck",
" lcs",
" worlds",
" msi",
" pro-player",
" esports-analytics",
" competitive-lol",
" team-analysis",
" player-stats",
" tournament-prediction"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "eeefa1bf680a4f1e9e487c03717217f21ccc9a4ffe911d2568cc87698513b2ba",
"md5": "4ae48646124f7080cb860a094c75f24c",
"sha256": "712197220c813af151d05a3cfc4e732e8c7b603140b4c80f74ba1a110833301b"
},
"downloads": -1,
"filename": "netmind_lolGPT-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4ae48646124f7080cb860a094c75f24c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 6179,
"upload_time": "2025-07-28T07:27:17",
"upload_time_iso_8601": "2025-07-28T07:27:17.774528Z",
"url": "https://files.pythonhosted.org/packages/ee/ef/a1bf680a4f1e9e487c03717217f21ccc9a4ffe911d2568cc87698513b2ba/netmind_lolGPT-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5019615aba43e395aed7a335a1163cc757588306255b60e5bd7b75eb132d0fe2",
"md5": "78f9b35f0f57883cba93a28cc0490cde",
"sha256": "b784b22cf92350ca1093e7c363d7f69ba65def820c0821bb997558a5e8549d20"
},
"downloads": -1,
"filename": "netmind_lolgpt-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "78f9b35f0f57883cba93a28cc0490cde",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 5949,
"upload_time": "2025-07-28T07:27:19",
"upload_time_iso_8601": "2025-07-28T07:27:19.443120Z",
"url": "https://files.pythonhosted.org/packages/50/19/615aba43e395aed7a335a1163cc757588306255b60e5bd7b75eb132d0fe2/netmind_lolgpt-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-28 07:27:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "onepersonunicorn",
"github_project": "lolgpt",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "fastmcp",
"specs": [
[
">=",
"0.1.0"
]
]
},
{
"name": "requests",
"specs": [
[
">=",
"2.28.0"
]
]
}
],
"lcname": "netmind-lolgpt"
}