netmind-lolGPT


Namenetmind-lolGPT JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/onepersonunicorn/lolgpt
SummaryAI-powered League of Legends professional esports match predictor and summoner analysis tool. Predict outcomes for T1, Faker, Zeus, and other pro players with advanced statistical modeling.
upload_time2025-07-28 07:27:19
maintainerNone
docs_urlNone
authorlolGPT Team
requires_python>=3.10
licenseNone
keywords mcp league-of-legends lol summoner mock-match simulation esports gaming riot-games summoners-rift prediction pvp comparison professional-gaming t1 faker zeus lck lcs worlds msi pro-player esports-analytics competitive-lol team-analysis player-stats tournament-prediction
VCS
bugtrack_url
requirements fastmcp requests
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # League of Legends Mock Match Predictor

βš”οΈ **AI-powered League of Legends mock match simulator and summoner comparison tool**

This Model Context Protocol (MCP) server provides comprehensive League of Legends summoner analysis and mock match simulations based on historical performance data from the last 10 games.

## Features

- **πŸ” Summoner Analysis**: Get detailed statistics including KDA, damage dealt, and win rates
- **βš”οΈ Mock Match Simulation**: AI-powered 10-phase match progression simulation
- **🌍 Multi-language Support**: Available in 7 languages
- **πŸ“Š Performance Comparison**: Side-by-side summoner comparisons
- **🎯 Match Prediction**: Outcome prediction based on historical data

## Supported Languages

- English (EN/ENGLISH)
- Korean (ν•œκ΅­μ–΄)
- Traditional Chinese (繁體中文)
- Japanese (ζ—₯本θͺž)
- Spanish (ESPAΓ‘OL)
- Bengali (বাংলা)
- Punjabi (ΰ¨ͺΰ©°ΰ¨œΰ¨Ύΰ¨¬ΰ©€)

## Installation

### Prerequisites

- Python 3.10 or higher
- pip package manager

### Setup

1. **Clone the repository**:
   ```bash
   git clone https://github.com/onepersonunicorn/lolgpt.git
   cd lolgpt
   ```

2. **Install dependencies**:
   ```bash
   pip install -r requirements.txt
   ```

3. **Set up environment variables** (optional):
   ```bash
   export LOL_API_URL="https://1tier.xyz"
   export LOL_DEFAULT_LANGUAGE="EN"
   export LOL_API_TIMEOUT="30"
   ```

4. **Run the server**:
   ```bash
   python main.py
   ```

## Usage

### Available Tools

The MCP server provides 6 different tools for various League of Legends simulation needs:

#### `league_of_legends_summoner_vs_match`
Main tool for comprehensive match simulation.

**Parameters:**
- `uidA` (required): Riot ID of first summoner
- `tagA` (required): Tag of first summoner  
- `uidB` (required): Riot ID of second summoner
- `tagB` (required): Tag of second summoner
- `lang` (optional): Language for simulation (default: "EN")

### Example API call
```python
await league_of_legends_summoner_vs_match(
    uidA="Hide on bush",
    tagA="KR1", 
    uidB="Zeus",
    tagB="KR1",
    lang="EN"
)
```

### Example Usage

![conversations](img/lolGPT_MCP.gif)

### Sample Output

```
βš”οΈ **League of Legends Mock Match Simulation**
════════════════════════════════════════════

πŸ“Š Summoner A (PlayerOne#KR1) - Last 10 Games Statistics:
β€’ Average Kills: 8.2
β€’ Average Assists: 12.5
β€’ Average Deaths: 4.1
β€’ Average KDA: 5.05
β€’ Average Damage Dealt: 28,450
β€’ Win Rate: 70%

πŸ“Š Summoner B (PlayerTwo#NA1) - Last 10 Games Statistics:
β€’ Average Kills: 6.8
β€’ Average Assists: 9.2
β€’ Average Deaths: 5.3
β€’ Average KDA: 3.02
β€’ Average Damage Dealt: 22,100
β€’ Win Rate: 55%

🎯 Mock Match Simulation - Summoner's Rift:
════════════════════════════════════════════

Phase 1: Welcome to the Snowdown Showdown.
Phase 2: Thirty seconds until minions spawn.
Phase 3: Minions have spawned!
Phase 4: First blood! Zeus has been slain.
Phase 5: Hide on bush has slain an enemy!
Phase 6: Hide on bush has destroyed a turret.
Phase 7: Zeus Quadrakill!
Phase 8: Hide on bush is legendary!
Phase 9: Hide on bush has destroyed a inhibitor.
Phase 10: Hide on bush victory!

### Smithery Configuration

The server supports Smithery configuration via `smithery.yaml`:

```

```yaml
startCommand:
  type: stdio
  configSchema:
    properties:
      debug:
        type: boolean
        default: false
      apiUrl:
        type: string
        default: "https://1tier.xyz"
      language:
        type: string
        default: "EN"
      timeout:
        type: number
        default: 30
```

## API Integration

The server integrates with the 1tier.xyz API endpoint which provides:

- **Summoner Statistics**: Last 10 games performance data
- **Match Simulation**: AI-generated match progression
- **Multi-language Support**: Localized simulation text
- **Real-time Data**: Current summoner performance metrics

## License

This project is licensed under the MIT License

## Disclaimer

League of Legends mock match simulations are for entertainment purposes only. Results are based on historical performance data and do not guarantee actual match outcomes. League of Legends is a trademark of Riot Games, Inc.

## Support

For issues and questions:
- Create an issue on GitHub
- Contact the development team

## Acknowledgments

- **Riot Games** for League of Legends
- **1tier.xyz** for providing the API infrastructure

---

Made with ❀️ for the League of Legends community

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/onepersonunicorn/lolgpt",
    "name": "netmind-lolGPT",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "mcp, league-of-legends, lol, summoner, mock-match, simulation, esports, gaming, riot-games, summoners-rift, prediction, pvp, comparison, professional-gaming, t1, faker, zeus, lck, lcs, worlds, msi, pro-player, esports-analytics, competitive-lol, team-analysis, player-stats, tournament-prediction",
    "author": "lolGPT Team",
    "author_email": "lolGPT Team <faker@1tier.xyz>",
    "download_url": "https://files.pythonhosted.org/packages/50/19/615aba43e395aed7a335a1163cc757588306255b60e5bd7b75eb132d0fe2/netmind_lolgpt-1.0.0.tar.gz",
    "platform": null,
    "description": "# League of Legends Mock Match Predictor\n\n\u2694\ufe0f **AI-powered League of Legends mock match simulator and summoner comparison tool**\n\nThis Model Context Protocol (MCP) server provides comprehensive League of Legends summoner analysis and mock match simulations based on historical performance data from the last 10 games.\n\n## Features\n\n- **\ud83d\udd0d Summoner Analysis**: Get detailed statistics including KDA, damage dealt, and win rates\n- **\u2694\ufe0f Mock Match Simulation**: AI-powered 10-phase match progression simulation\n- **\ud83c\udf0d Multi-language Support**: Available in 7 languages\n- **\ud83d\udcca Performance Comparison**: Side-by-side summoner comparisons\n- **\ud83c\udfaf Match Prediction**: Outcome prediction based on historical data\n\n## Supported Languages\n\n- English (EN/ENGLISH)\n- Korean (\ud55c\uad6d\uc5b4)\n- Traditional Chinese (\u7e41\u9ad4\u4e2d\u6587)\n- Japanese (\u65e5\u672c\u8a9e)\n- Spanish (ESPA\u00d1OL)\n- Bengali (\u09ac\u09be\u0982\u09b2\u09be)\n- Punjabi (\u0a2a\u0a70\u0a1c\u0a3e\u0a2c\u0a40)\n\n## Installation\n\n### Prerequisites\n\n- Python 3.10 or higher\n- pip package manager\n\n### Setup\n\n1. **Clone the repository**:\n   ```bash\n   git clone https://github.com/onepersonunicorn/lolgpt.git\n   cd lolgpt\n   ```\n\n2. **Install dependencies**:\n   ```bash\n   pip install -r requirements.txt\n   ```\n\n3. **Set up environment variables** (optional):\n   ```bash\n   export LOL_API_URL=\"https://1tier.xyz\"\n   export LOL_DEFAULT_LANGUAGE=\"EN\"\n   export LOL_API_TIMEOUT=\"30\"\n   ```\n\n4. **Run the server**:\n   ```bash\n   python main.py\n   ```\n\n## Usage\n\n### Available Tools\n\nThe MCP server provides 6 different tools for various League of Legends simulation needs:\n\n#### `league_of_legends_summoner_vs_match`\nMain tool for comprehensive match simulation.\n\n**Parameters:**\n- `uidA` (required): Riot ID of first summoner\n- `tagA` (required): Tag of first summoner  \n- `uidB` (required): Riot ID of second summoner\n- `tagB` (required): Tag of second summoner\n- `lang` (optional): Language for simulation (default: \"EN\")\n\n### Example API call\n```python\nawait league_of_legends_summoner_vs_match(\n    uidA=\"Hide on bush\",\n    tagA=\"KR1\", \n    uidB=\"Zeus\",\n    tagB=\"KR1\",\n    lang=\"EN\"\n)\n```\n\n### Example Usage\n\n![conversations](img/lolGPT_MCP.gif)\n\n### Sample Output\n\n```\n\u2694\ufe0f **League of Legends Mock Match Simulation**\n\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\n\n\ud83d\udcca Summoner A (PlayerOne#KR1) - Last 10 Games Statistics:\n\u2022 Average Kills: 8.2\n\u2022 Average Assists: 12.5\n\u2022 Average Deaths: 4.1\n\u2022 Average KDA: 5.05\n\u2022 Average Damage Dealt: 28,450\n\u2022 Win Rate: 70%\n\n\ud83d\udcca Summoner B (PlayerTwo#NA1) - Last 10 Games Statistics:\n\u2022 Average Kills: 6.8\n\u2022 Average Assists: 9.2\n\u2022 Average Deaths: 5.3\n\u2022 Average KDA: 3.02\n\u2022 Average Damage Dealt: 22,100\n\u2022 Win Rate: 55%\n\n\ud83c\udfaf Mock Match Simulation - Summoner's Rift:\n\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\u2550\n\nPhase 1: Welcome to the Snowdown Showdown.\nPhase 2: Thirty seconds until minions spawn.\nPhase 3: Minions have spawned!\nPhase 4: First blood! Zeus has been slain.\nPhase 5: Hide on bush has slain an enemy!\nPhase 6: Hide on bush has destroyed a turret.\nPhase 7: Zeus Quadrakill!\nPhase 8: Hide on bush is legendary!\nPhase 9: Hide on bush has destroyed a inhibitor.\nPhase 10: Hide on bush victory!\n\n### Smithery Configuration\n\nThe server supports Smithery configuration via `smithery.yaml`:\n\n```\n\n```yaml\nstartCommand:\n  type: stdio\n  configSchema:\n    properties:\n      debug:\n        type: boolean\n        default: false\n      apiUrl:\n        type: string\n        default: \"https://1tier.xyz\"\n      language:\n        type: string\n        default: \"EN\"\n      timeout:\n        type: number\n        default: 30\n```\n\n## API Integration\n\nThe server integrates with the 1tier.xyz API endpoint which provides:\n\n- **Summoner Statistics**: Last 10 games performance data\n- **Match Simulation**: AI-generated match progression\n- **Multi-language Support**: Localized simulation text\n- **Real-time Data**: Current summoner performance metrics\n\n## License\n\nThis project is licensed under the MIT License\n\n## Disclaimer\n\nLeague of Legends mock match simulations are for entertainment purposes only. Results are based on historical performance data and do not guarantee actual match outcomes. League of Legends is a trademark of Riot Games, Inc.\n\n## Support\n\nFor issues and questions:\n- Create an issue on GitHub\n- Contact the development team\n\n## Acknowledgments\n\n- **Riot Games** for League of Legends\n- **1tier.xyz** for providing the API infrastructure\n\n---\n\nMade with \u2764\ufe0f for the League of Legends community\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "AI-powered League of Legends professional esports match predictor and summoner analysis tool. Predict outcomes for T1, Faker, Zeus, and other pro players with advanced statistical modeling.",
    "version": "1.0.0",
    "project_urls": {
        "Documentation": "https://1tier.xyz",
        "Homepage": "https://1tier.xyz",
        "Repository": "https://github.com/onepersonunicorn/lolgpt"
    },
    "split_keywords": [
        "mcp",
        " league-of-legends",
        " lol",
        " summoner",
        " mock-match",
        " simulation",
        " esports",
        " gaming",
        " riot-games",
        " summoners-rift",
        " prediction",
        " pvp",
        " comparison",
        " professional-gaming",
        " t1",
        " faker",
        " zeus",
        " lck",
        " lcs",
        " worlds",
        " msi",
        " pro-player",
        " esports-analytics",
        " competitive-lol",
        " team-analysis",
        " player-stats",
        " tournament-prediction"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "eeefa1bf680a4f1e9e487c03717217f21ccc9a4ffe911d2568cc87698513b2ba",
                "md5": "4ae48646124f7080cb860a094c75f24c",
                "sha256": "712197220c813af151d05a3cfc4e732e8c7b603140b4c80f74ba1a110833301b"
            },
            "downloads": -1,
            "filename": "netmind_lolGPT-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4ae48646124f7080cb860a094c75f24c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 6179,
            "upload_time": "2025-07-28T07:27:17",
            "upload_time_iso_8601": "2025-07-28T07:27:17.774528Z",
            "url": "https://files.pythonhosted.org/packages/ee/ef/a1bf680a4f1e9e487c03717217f21ccc9a4ffe911d2568cc87698513b2ba/netmind_lolGPT-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5019615aba43e395aed7a335a1163cc757588306255b60e5bd7b75eb132d0fe2",
                "md5": "78f9b35f0f57883cba93a28cc0490cde",
                "sha256": "b784b22cf92350ca1093e7c363d7f69ba65def820c0821bb997558a5e8549d20"
            },
            "downloads": -1,
            "filename": "netmind_lolgpt-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "78f9b35f0f57883cba93a28cc0490cde",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 5949,
            "upload_time": "2025-07-28T07:27:19",
            "upload_time_iso_8601": "2025-07-28T07:27:19.443120Z",
            "url": "https://files.pythonhosted.org/packages/50/19/615aba43e395aed7a335a1163cc757588306255b60e5bd7b75eb132d0fe2/netmind_lolgpt-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-28 07:27:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "onepersonunicorn",
    "github_project": "lolgpt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "fastmcp",
            "specs": [
                [
                    ">=",
                    "0.1.0"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.28.0"
                ]
            ]
        }
    ],
    "lcname": "netmind-lolgpt"
}
        
Elapsed time: 0.54122s