networkx-temporal


Namenetworkx-temporal JSON
Version 1.1 PyPI version JSON
download
home_pageNone
SummaryPython package to build and manipulate dynamic NetworkX graphs.
upload_time2024-11-21 16:05:50
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords network graph dynamic graph temporal network
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![networkx-temporal](https://github.com/nelsonaloysio/networkx-temporal/raw/main/docs/figure/banner.png)]()

___

[![PyPI package](https://badge.fury.io/py/networkx-temporal.svg)](https://pypi.org/p/networkx-temporal/)
[![Documentation Status](https://readthedocs.org/projects/networkx-temporal/badge/?version=latest)](https://networkx-temporal.readthedocs.io/)
[![Downloads](https://static.pepy.tech/badge/networkx-temporal)](https://pepy.tech/project/networkx-temporal?versions=*)
[![Downloads](https://static.pepy.tech/badge/networkx-temporal/month)](https://pepy.tech/project/networkx-temporal?versions=*)
[![License](https://img.shields.io/pypi/l/networkx-temporal)](https://github.com/nelsonaloysio/networkx-temporal/blob/main/LICENSE.md)

Python package to build and manipulate temporal graphs using [NetworkX](https://pypi.org/project/networkx/) as backend.

## Requirements

* **Python>=3.7**
* networkx>=2.1
* pandas>=1.1.0

## Install

Package is available to install on [PyPI](https://pypi.org/project/networkx-temporal/):

```bash
$ pip install 'networkx-temporal[draw]'
```

> The `[draw]` extra includes additional libraries required to plot graphs with NetworkX.

## Quick example

For detailed information on using the package, please refer to its [official documentation](https://networkx-temporal.readthedocs.io).

> An interactive Jupyter notebook with more examples is also [available here](https://github.com/nelsonaloysio/networkx-temporal/blob/main/notebook/networkx-temporal.ipynb) ([open on Colab](https://colab.research.google.com/github/nelsonaloysio/networkx-temporal/blob/main/notebook/networkx-temporal.ipynb)).

```python
>>> import networkx_temporal as tx
>>>
>>> # Build directed temporal graph.
>>> TG = tx.TemporalDiGraph()
>>> TG.add_edge("a", "b", time=0)
>>> TG.add_edge("c", "b", time=1)
>>> TG.add_edge("d", "c", time=2)
>>> TG.add_edge("d", "e", time=2)
>>> TG.add_edge("a", "c", time=2)
>>> TG.add_edge("f", "e", time=3)
>>> TG.add_edge("f", "a", time=3)
>>> TG.add_edge("f", "b", time=3)
>>>
>>> # Slice it into snapshots.
>>> TG = TG.slice(attr="time")
>>>
>>> # Plot resulting object.
>>> tx.draw(TG, layout="kamada_kawai", figsize=(8,2))
```

![png](https://github.com/nelsonaloysio/networkx-temporal/raw/main/docs/figure/example/fig-0.png)

## Contributing

Contributions are welcome! If you find any bugs or have any suggestions, feel free to [open a ticket](issues/new), [fork the repository](fork) and create a [pull request](compare), or simply [send an e-mail](mailto:nelson.reis@phd.unipi.it).
Please keep in mind that any out-of-scope contributions (not regarding temporal networks) should instead be directed to the [NetworkX](https://github.com/networkx/networkx) repository.

## License

This package is released under the [BSD License](LICENSE.md).

## Cite

In case this package is useful for your research, please kindly consider [citing it](https://networkx-temporal.readthedocs.io/en/stable/cite.html).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "networkx-temporal",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "Network, Graph, Dynamic Graph, Temporal Network",
    "author": null,
    "author_email": "Nelson Aloysio Reis de Almeida Passos <nelson.reis@phd.unipi.it>",
    "download_url": "https://files.pythonhosted.org/packages/da/2b/36c6696e25a5ca2f3014e6ca76b484a97f8904457560ec003924926edfd8/networkx_temporal-1.1.tar.gz",
    "platform": null,
    "description": "[![networkx-temporal](https://github.com/nelsonaloysio/networkx-temporal/raw/main/docs/figure/banner.png)]()\n\n___\n\n[![PyPI package](https://badge.fury.io/py/networkx-temporal.svg)](https://pypi.org/p/networkx-temporal/)\n[![Documentation Status](https://readthedocs.org/projects/networkx-temporal/badge/?version=latest)](https://networkx-temporal.readthedocs.io/)\n[![Downloads](https://static.pepy.tech/badge/networkx-temporal)](https://pepy.tech/project/networkx-temporal?versions=*)\n[![Downloads](https://static.pepy.tech/badge/networkx-temporal/month)](https://pepy.tech/project/networkx-temporal?versions=*)\n[![License](https://img.shields.io/pypi/l/networkx-temporal)](https://github.com/nelsonaloysio/networkx-temporal/blob/main/LICENSE.md)\n\nPython package to build and manipulate temporal graphs using [NetworkX](https://pypi.org/project/networkx/) as backend.\n\n## Requirements\n\n* **Python>=3.7**\n* networkx>=2.1\n* pandas>=1.1.0\n\n## Install\n\nPackage is available to install on [PyPI](https://pypi.org/project/networkx-temporal/):\n\n```bash\n$ pip install 'networkx-temporal[draw]'\n```\n\n> The `[draw]` extra includes additional libraries required to plot graphs with NetworkX.\n\n## Quick example\n\nFor detailed information on using the package, please refer to its [official documentation](https://networkx-temporal.readthedocs.io).\n\n> An interactive Jupyter notebook with more examples is also [available here](https://github.com/nelsonaloysio/networkx-temporal/blob/main/notebook/networkx-temporal.ipynb) ([open on Colab](https://colab.research.google.com/github/nelsonaloysio/networkx-temporal/blob/main/notebook/networkx-temporal.ipynb)).\n\n```python\n>>> import networkx_temporal as tx\n>>>\n>>> # Build directed temporal graph.\n>>> TG = tx.TemporalDiGraph()\n>>> TG.add_edge(\"a\", \"b\", time=0)\n>>> TG.add_edge(\"c\", \"b\", time=1)\n>>> TG.add_edge(\"d\", \"c\", time=2)\n>>> TG.add_edge(\"d\", \"e\", time=2)\n>>> TG.add_edge(\"a\", \"c\", time=2)\n>>> TG.add_edge(\"f\", \"e\", time=3)\n>>> TG.add_edge(\"f\", \"a\", time=3)\n>>> TG.add_edge(\"f\", \"b\", time=3)\n>>>\n>>> # Slice it into snapshots.\n>>> TG = TG.slice(attr=\"time\")\n>>>\n>>> # Plot resulting object.\n>>> tx.draw(TG, layout=\"kamada_kawai\", figsize=(8,2))\n```\n\n![png](https://github.com/nelsonaloysio/networkx-temporal/raw/main/docs/figure/example/fig-0.png)\n\n## Contributing\n\nContributions are welcome! If you find any bugs or have any suggestions, feel free to [open a ticket](issues/new), [fork the repository](fork) and create a [pull request](compare), or simply [send an e-mail](mailto:nelson.reis@phd.unipi.it).\nPlease keep in mind that any out-of-scope contributions (not regarding temporal networks) should instead be directed to the [NetworkX](https://github.com/networkx/networkx) repository.\n\n## License\n\nThis package is released under the [BSD License](LICENSE.md).\n\n## Cite\n\nIn case this package is useful for your research, please kindly consider [citing it](https://networkx-temporal.readthedocs.io/en/stable/cite.html).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Python package to build and manipulate dynamic NetworkX graphs.",
    "version": "1.1",
    "project_urls": {
        "Changelog": "https://github.com/nelsonaloysio/networkx-temporal/blob/main/CHANGELOG.md",
        "Documentation": "https://networkx-temporal.readthedocs.io",
        "Homepage": "https://pypi.org/p/networkx-temporal/",
        "Issues": "https://github.com/nelsonaloysio/networkx-temporal/issues",
        "Repository": "https://github.com/nelsonaloysio/networkx-temporal"
    },
    "split_keywords": [
        "network",
        " graph",
        " dynamic graph",
        " temporal network"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2ab2d6882773e9180f013117291fcfe742f376f1cd8d38cecc730a5df4462e75",
                "md5": "cd88d57efa4b7eb7884e651a62661789",
                "sha256": "da5ea5ee50a6cb3cebed2e6524f77099ae9f74eec977d9eea2f58c5b59cd776e"
            },
            "downloads": -1,
            "filename": "networkx_temporal-1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cd88d57efa4b7eb7884e651a62661789",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 48609,
            "upload_time": "2024-11-21T16:05:48",
            "upload_time_iso_8601": "2024-11-21T16:05:48.929837Z",
            "url": "https://files.pythonhosted.org/packages/2a/b2/d6882773e9180f013117291fcfe742f376f1cd8d38cecc730a5df4462e75/networkx_temporal-1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "da2b36c6696e25a5ca2f3014e6ca76b484a97f8904457560ec003924926edfd8",
                "md5": "6157e11a48d35386c6e6988ee4f79cd4",
                "sha256": "d2b79a18d76a7a3a288223f8ef659abf52c62c256cea67ba52a293871178812f"
            },
            "downloads": -1,
            "filename": "networkx_temporal-1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6157e11a48d35386c6e6988ee4f79cd4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 35623,
            "upload_time": "2024-11-21T16:05:50",
            "upload_time_iso_8601": "2024-11-21T16:05:50.862727Z",
            "url": "https://files.pythonhosted.org/packages/da/2b/36c6696e25a5ca2f3014e6ca76b484a97f8904457560ec003924926edfd8/networkx_temporal-1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-21 16:05:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "nelsonaloysio",
    "github_project": "networkx-temporal",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "networkx-temporal"
}
        
Elapsed time: 0.79648s